Search Submissions 🔎

Results for "Issa Mohamad": 2 found

Evaluating the Performance and Limitations of an Automated Treatment Planning Tool for Intact Breast Radiotherapy across Diverse Patient Populations

Authors: Shatha Al Afifi, Hana Baroudi, Leonard Che Fru, Laurence Edward Court, Suzanne B. Evans, Kent A. Gifford, Adam D. Melancon, Melissa P. Mitchell, Issa Mohamad, Patricia Murina, Manickam Muruganandham, Tucker J. Netherton, Callistus M. Nguyen, Joshua S. Niedzielski, Deborah L. Schofield, Simona Shaitelman, Willie Shaw, Sanjay S. Shete, Adam Shulman, Brendon Smith, Sheeba Thengumpallil, Carlos Daniel Venencia, Conny Vrieling

Affiliation: University of Cape Town, MD Anderson Cancer Center, The University of Texas MD Anderson Cancer Center, University of the Free State, UT MD Anderson Cancer Center, King Hussein Cancer Center, Instituto Zunino - Fundacion Marie Curie, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Dra., Hirslanden Clinique des Grangettes, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Department of Therapeutic Radiology, Yale University School of Medicine, Yale University, The University of Texas, MD Anderson, Houston TX

Abstract Preview: Purpose:
Automated contouring and planning tools are usually trained on single-institution datasets, seldom tested across diverse patient populations. This introduces a risk of population bias, res...

Improving the Robustness of AI-Based Detection and Segmentation for Brain Metastasis By Optimizing Loss Function and Multi-Dataset Training

Authors: Omar Awad, Alfredo Enrique Echeverria, Issam M. El Naqa, Daniel Allan Hamstra, Yiding Han, Ryan Lafratta, Abdallah Sherif Radwan Mohamed, Piyush Pathak, Zaid Ali Siddiqui, Baozhou Sun, Vincent Ugarte

Affiliation: H. Lee Moffitt Cancer Center, Harris Health, Baylor College of Medicine

Abstract Preview: Purpose:
Accurate detection and segmentation of brain metastases are critical for diagnosis, treatment planning, and follow-up imaging but are challenging due to labor-intensive manual assessments ...