Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Gregory Szalkowski, Qingying Wang, Kangning Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose: Respiratory motion management is crucial for accurate radiation delivery to moving targets while protecting healthy tissue, relying on time-resolved volumetric imaging and continuous deformab...
Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose:
PET is used in radiotherapy workflows for accurate target delineation. However, a separate CT scan is typically required for attenuation correction in PET imaging and for registering PET-d...
Authors: John Byun, Steven D Chang, Cynthia Fu-Yu Chuang, Xuejun Gu, Melanie Hayden Gephart, Yusuke Hori, Fred Lam, Gordon Li, Lianli Liu, Weiguo Lu, David Park, Erqi Pollom, Elham Rahimy, Deyaaldeen Abu Reesh, Scott Soltys, Gregory Szalkowski, Lei Wang, Xianghua Ye, Kangning Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Department of Neurosurgery, Stanford University, Department of Radiation Oncology, Stanford University, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose: Accurate and automated delineation of vestibular schwannoma (VS) volume is crucial for disease management, as both treatment approaches (stereotactic radiosurgery and invasive surgery) and mo...
Authors: John Byun, Steven D Chang, Mingli Chen, Cynthia Chuang, Xuejun Gu, Melanie Hayden Gephart, Yusuke Hori, Hao Jiang, Mahdieh Kazemimoghadam, Fred Lam, Gordon Li, Lianli Liu, Weiguo Lu, David Park, Erqi Pollom, Elham Rahimy, Deyaaldeen Abu Reesh, Scott Soltys, Gregory Szalkowski, Lei Wang, Qingying Wang, Zi Yang, Xianghua Ye, Kangning Zhang
Affiliation: Department of Radiation Oncology, Stanford University, Department of Neurosurgery, Stanford University, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose: Accurate prediction of pain relief is crucial in determining the clinical effectiveness of Stereotactic body radiotherapy (SBRT) regimen for spine metastases. We propose a deep-learning frame...
Authors: Mingli Chen, Xuejun Gu, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Zi Yang, Kangning Zhang, You Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose: Delivery efficiency and robustness are critical in spot-scanning proton arc therapy (SPAT), yet the conventional use of redundant energy layers (ELs) prolongs switching times and reduces effi...
Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose:
Deep learning-based automatic medical image segmentation is increasingly employed in clinical practice, significantly reducing manual workload. However, verifying segmentation results rema...
Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose:
This work demonstrates how existing software, when creatively adapted, can address a wide range of clinical challenges. By focusing on data exploration and application-specific modificatio...
Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Zi Yang, Kangning Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose: Dose prediction (DP) is essential in guiding radiotherapy planning. However, current DP models for intensity-modulated radiation therapy (IMRT) primarily rely on fixed-beam orientations and a...
Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose:
Converting MR images to synthetic CT (MR2sCT) is highly desirable as it streamlines the radiotherapy treatment planning workflow. This approach leverages the superior soft tissue visibilit...