Authors: Aditya P. Apte, Joseph O. Deasy, Jue Jiang, Nancy Lee, Sudharsan Madhavan, Nishant Nadkarni, Lopamudra Nayak, Harini Veeraraghavan, Wei Zhao
Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center
Abstract Preview: Purpose: To track early response to radiotherapy using digital twins, it is crucial to quantify tumor volume and mass changes. Traditional tumor detection methods, particularly in image registration, ...
Authors: Chloe Min Seo Choi, Joseph O. Deasy, Jue Jiang, Sudharsan Madhavan, Nikhil Mankuzhy, Nishant Nadkarni, Andreas Rimner, Maria Thor, Harini Veeraraghavan, Abraham Wu
Affiliation: University of Freibrug, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center
Abstract Preview: Purpose: Voxel-based analysis (VBA) requires accurate topology-preserving inter-patient deformable image registration (DIR). This study assessed whether guiding a DIR method with geometric priors of t...
Authors: Lando S. Bosma, Victoria Brennan, Nicolas Cote, ChengCheng Gui, Nima Hassan Rezaeian, Jue Jiang, Sudharsan Madhavan, Josiah Simeth, Neelam Tyagi, Harini Veeraraghavan, Michael J Zelefsky
Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, NYU Langone Health, University Medical Center Utrecht, Memorial Sloan Kettering Cancer Center
Abstract Preview: Purpose: Deep learning-based deformable image registration (DIR) models often lack robustness when applied to datasets with differing imaging characteristics. We aimed to (1) improve registration netw...