Search Submissions ๐Ÿ”Ž

Results for "attention network": 25 found

A Study of Large Model Alignment Techniques for MRI Images of Small Sample Meningioma

Authors: Xiangli Cui, Man Hu, Wanli Huo, Da Yao, Jianguang Zhang, Yingying Zhang, Shanyang Zhao

Affiliation: Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, the Zhejiang-New Zealand Joint Vision-Based Intelligent Metrology Laboratory, College of Information Engineering, China Jiliang University, Departments of Radiation Oncology, Zibo Wanjie Cancer Hospital, Department of Oncology, Xiangya Hospital, Central South University, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences

Abstract Preview: Purpose:
To study the fine-tuning strategy of pre-trained AI image generation model to adapt to the generation of small sample meningioma MRI images, explore its impact on observer performance, and...

A Window-Level Based Approach for Generating Missing Tissue in CT Scans Using a Transformer-Gan Model

Authors: Mojtaba Behzadipour, Siyong Kim, Mitchell Polizzi, Richard R. Wargo, Lulin Yuan

Affiliation: VCU Health - Department of Radiology, Virginia Commonwealth University

Abstract Preview: Purpose:
The purpose of this study is to develop a method for generating missing tissue in CT scans of patients with large body sizes, where the field of view (FOV) of the scanner fails to capture ...

An Adaptive Radiotherapy Strategy Study Based on Segmented Synthesis and Deformational Registration

Authors: Jie Hu, Zhengdong Jiang, Nan Li, Tie Lv, Yuqing Xia, Shouping Xu, Gaolong Zhang, Wei Zhao, Changyou Zhong

Affiliation: School of Physics, Beihang University, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Radiotherapy Department of Meizhou Peopleโ€™s Hospital (Huangtang Hospital), UT Health San Antonio, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, Peopleสผs Republic of China, Department of Radiation Oncology

Abstract Preview: Purpose: Patients usually undergo cone-beam computed tomography (CBCT) scans which are used for patient set-up before radiotherapy. However, the low image quality of CBCT hinders its use in adaptive r...

An Efficient Deep Learning Model with Multi-Scale Integration for Automated Pancreas Segmentation on MR Images

Authors: Jingyun Chen, Yading Yuan

Affiliation: Columbia University Irving Medical Center, Department of Radiation Oncology

Abstract Preview: Purpose: To develop and evaluate the Scale-attention network (SANet) for automated pancreas segmentation on MR images.
Methods: To develop SANet, we extended the classic U-Net design with a dynamic...

BEST IN PHYSICS IMAGING: Cross-Contrast Diffusion: A Synergistic Approach for Simultaneous Multi-Contrast MRI Super-Resolution

Authors: Yifei Hao, Wenxuan Li, Xiang Li, Tao Peng, Yulu Wu, Fang-Fang Yin, Yue Yuan, Lei Zhang, Yaogong Zhang

Affiliation: Duke University, School of Future Science and Engineering, Soochow University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Diffusion-based deep-learning frameworks have been recently used in MRI resolution enhancement, or super-resolution. Multi-contrast MRI share common anatomical structures while holding comple...

Biomechanically Guided Deep Learning for Deformable Multimodality Liver Registration Framework

Authors: Yunfei Dong, Dongyang Guo, Zhenyu Yang, Fang-Fang Yin, Zeyu Zhang

Affiliation: Duke University, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose:
To develop a Biomechanically Guided Deep Learning Registration Network (BG-DRNet) that improves both accuracy and physiological plausibility in liver image registration. While cone-beam CT...

CNN-Based Visualization for Detecting Failure Patterns of Lung SBRT through CT-Biological Effective Dose Interaction

Authors: Ashok Bhandari, Kurtis Johnson, Yu Lei, Tianzhe Li, Kyuhak Oh, Shuo Wang, Chi Zhang, Su-Min Zhou

Affiliation: University of Nebraska Medical Center

Abstract Preview: Purpose: The purpose of this study was to leverage neural network visualization tools to detect high-attention areas indicative of treatment failure in lung SBRT by examining correlation matrices betw...

Cerebellar Mutism Syndrome Prediction with 3D Residual Convolutional Neural Network

Authors: Sahaja Acharya, Matthew Ladra, Junghoon Lee, Lina Mekki, Bohua Wan

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Department of Biomedical Engineering, Johns Hopkins University, Department of Computer Science, Johns Hopkins University

Abstract Preview: Purpose: Cerebellar mutism syndrome (CMS) is the most frequently observed complication in children undergoing surgical resection of posterior fossa tumors. Previous work explored lesion to symptom map...

Comparative Analysis of Nine Deep Learning Architectures for Variable Density Grappa 1H Magnetic Resonance Spectroscopy Imaging (MRSI) Reconstruction

Authors: Kimberly Chan, Anke Henning, Mahrshi Jani, Andrew Wright, Xinyu Zhang

Affiliation: Advanced Imaging Research Center (AIRC), UT Southwestern Medical Center

Abstract Preview: Purpose: To evaluate the performance of multiple deep learning architectures for MRSI reconstruction and determine their effectiveness in maintaining high-resolution metabolite mapping while reducing ...

Deep Learning-Driven Comparative Analysis of CNN-Based Architectures and High-Order Vision Mamba U-Net (H-vMUNet) for MRI-Based Brain Tumor Segmentation

Authors: Sang Hee Ahn, Nalee Kim, Do Hoon Lim

Affiliation: Samsung Medical Center, Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine

Abstract Preview: Purpose: MRI offers superior soft-tissue contrast, aiding tumor localization and segmentation in radiation therapy, which traditionally relies on oncologists' expertise. This study compares CNN-based ...

Development of an Orthogonal X-Ray Projections-Guided Cascading Volumetric Reconstruction and Tumor-Tracking Model for Adaptive Radiotherapy

Authors: Penghao Gao, Zejun Jiang, Huazhong Shu, Linlin Wang, Gongsen Zhang, Jian Zhu

Affiliation: Laboratory of Image Science and Technology, Key Laboratory of Computer Network and Information Integration, Southeast University, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Artificial Intelligence Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences

Abstract Preview: Purpose: We propose a cascading framework for time-varying anatomical volumetric reconstruction and tumor-tracking, guided by onboard orthogonal-view X-ray projections.
Methods: We employe multiple...

Dual-Branch Attention-Driven Network for Enhanced Sparse-View CBCT Reconstruction Using Planning CT As Prior Knowledge

Authors: Xiaoyi Dai, Manju Liu, Weiwei Sang, Pulin Sun, Fan Xia, Zhenyu Yang, Fang-Fang Yin, Chulong Zhang, Rihui Zhang

Affiliation: Jiahui International Hospital, Radiation Oncology, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose:
Current deep learning-based sparse-view CBCT reconstruction methods are prone to hallucinatory artifacts, as they rely on inferred image details that may not correspond to true anatomical ...

Efficient Robustness Optimization in Intensity Modulated Proton Therapy for Head and Neck Cancer Via Visual State Space Attention Generative Adversarial Networks (VSSA-GAN)

Authors: Nan Li, Yaoying Liu, Shouping Xu, Gaolong Zhang

Affiliation: Department of Radiation Oncology, School of Physics, Beihang University, School of physics, Beihang University, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College

Abstract Preview: Purpose: In intensity-modulated proton therapy (IMPT) for head and neck cancer, CBCT registration ensures accurate setup, minimizing dose errors. Unlike IMRT, IMPT plans directly define tumor volumes ...

Explainable AI with Attention Gates for Transparent and Interpretable Lung Radiotherapy Plan Evaluation

Authors: Jeffrey D. Bradley, Steven J. Feigenberg, Cole Friedes, Yin Gao, Xun Jia, Kevin Teo, Lingshu Yin, Jennifer Wei Zou

Affiliation: Department of Radiation Oncology, University of Pennsylvania, Johns Hopkins University

Abstract Preview: Purpose: Understanding how physicians evaluate plans is critical for automatic planning and ensuring consistent, high-quality care. While deep-learning models excel in complex decision-making, the lac...

Foundation Model-Augmented Learning for Automatic Delineation in Precision Radiotherapy

Authors: Xianjin Dai, PhD, Michael Gensheimer, Praveenbalaji Rajendran, Lei Xing, Yong Yang

Affiliation: Department of Radiation Oncology, Stanford University, Massachusetts General Hospital, Harvard Medical School

Abstract Preview: Purpose: Recent advances in the automatic delineation of radiotherapy treatment targets, which incorporate linguistic clinical data extracted by large language models (LLMs) into traditional visual-on...

Generating 3D Brain in Volume (BRAVO) Images Using Attention-Gated Conditional Gan (AGC-GAN)

Authors: Nan Li, Shouping Xu, Gaolong Zhang, Xuerong Zhang

Affiliation: Department of Radiation Oncology, HeBei YiZhou proton center, School of Physics, Beihang University, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College

Abstract Preview: Purpose:
The 3D BRAVO sequence is an advanced magnetic resonance (MR) technique that allows for image reconstruction at any angle. It offers 1 mm gapless scanning and has a high signal-to-noise rat...

Generating Brain Pseudo-CT from PET-Only Images Using Deep Learning Method

Authors: Pouya Azarbar, Nima Kasraie, Mahsa Shahrbabki Mofrad, Peyman Sheikhzadeh

Affiliation: UT Southwestern Medical Center, Shahid Beheshti University of Medical science, Imam Khomeini Hospital Complex,Tehran University of Medical Sciences, Tehran University of Medical Science

Abstract Preview: Purpose: PET imaging become crucial in diagnosing and managing various diseases, but its key limitation is the lack of detailed anatomical information. Integrating CT-scans with PET images enhances cl...

Improving Mammography Diagnosis Accuracy through Global Context and Local Lesion Integration

Authors: Minbin Chen, Xiaoyi Dai, Xiaoyu Duan, Chunhao Wang, Fan Xia, Zhenyu Yang, Fang-Fang Yin, Chulong Zhang, Rihui Zhang

Affiliation: Duke University, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University, The First People's Hospital of Kunshan

Abstract Preview: Purpose: Deep learning (DL)-based mammography diagnosis presents unique challenges, as accurate interpretation requires both global breast condition analysis and local lesion structural information. E...

Muilt-Instance Learning Model with 2D and 3D Features Representation and Transformer-Based Prediction for FDG PET Tumor Chemoradiation Response of La-NSCLC

Authors: Stephen R. Bowen, Chunyan Duan, Daniel S. Hippe, Qiantuo Liu, Jiajie Wang, Shouyi Wang, Faisal Yaseen, Han Zhou

Affiliation: Tongji University, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Fred Hutchinson Cancer Center, University of Texas at Arlington

Abstract Preview: Purpose: Predicting the effects of the spatial-temporal tumor response to chemoradiation can assist in adjusting radiation dose and support clinical decision-making in radiotherapy. A multi-instance l...

Multi-Mechanism CNN and Long Short-Term Memory Fusion Model for Improved CT-Based Thyroid Cancer Diagnosis

Authors: Yunfei Dong, Dongyang Guo, Jiongli Pan, Tao Peng, Caiyin Tang, Zhenyu Yang, Fang-Fang Yin, Lei Zhang, Tianyi Zhang, Yaogong Zhang

Affiliation: Duke Kunshan University, Department of Radiology, Taizhou Peopleโ€™s Hospital Affiliated to Nanjing Medical University, School of Future Science and Engineering, Soochow University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: This study aims to improve the accuracy of CT-based diagnosis of thyroid cancer by developing a hybrid model that integrates Convolutional Neural Networks (CNNs) with Long Short-Term Memory (...

Multimodal Attention Fusion Model Leveraging Structured and Unstructured EHR Data for Hospital Readmission Prediction in Head and Neck Cancer

Authors: Shreyas Anil, Jason Chan, Arushi Gulati, Yannet Interian, Hui Lin, Benedict Neo, Andrea Park, Bhumika Srinivas

Affiliation: Department of Otolaryngology Head and Neck Surgery, University of California San Francisco, Department of Data Science, University of San Francisco, Department of Radiation Oncology, University of California San Francisco

Abstract Preview: Purpose: Hospital readmission prediction models often rely on structured Electronic Health Record (EHR) data, overlooking critical insights from unstructured clinical notes. This study presents a mult...

NA-Unetr: A Neighborhood Attention Transformer Network for Enhanced 3D Segmentation of the Left Anterior Descending Artery

Authors: Hassan Bagher-Ebadian, Ahmed I Ghanem, Joshua P. Kim, Chengyin Li, Rafi Ibn Sultan, Kundan S Thind, Dongxiao Zhu

Affiliation: Wayne State University, Department of Radiation Oncology, Henry Ford Health-Cancer, Detroit, MI and Alexandria Department of Clinical Oncology, Faculty of Medicine, Alexandria University, Henry Ford Health

Abstract Preview: Purpose: Accurate segmentation of the Left Anterior Descending (LAD) artery in free-breathing 3D treatment planning CT is crucial for radiotherapy but remains challenging due to its small size, comple...

Real-Time Fully Automated IMRT Planning without Optimization Process Using a Two-Step AI Framework

Authors: Daisuke Kawahara, Takaaki Matsuura, Yuji Murakami, Ryunosuke Yanagida

Affiliation: Hiroshima High-Precision Radiotherapy Cancer Center, Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima

Abstract Preview: Purpose: In recent years, automation in radiation therapy planning using AI has gained significant attention to reduce the workload of treatment planners. Adaptive Radiation Therapy (ART), as a new fo...

Simultaneous Synthesis of Lung Perfusion and Ventilation Images from CT Using a Dual-Decoder Residual Attention Network for Lung Disease Diagnosis

Authors: Li-Sheng Geng, David Huang, Haoze Li, Xi Liu, Meng Wang, Tianyu Xiong, Ruijie Yang, Weifang Zhang, Meixin Zhao

Affiliation: School of Physics, Beihang University, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Department of Radiation Oncology, Peking University Third Hospital, Department of Nuclear Medicine, Peking University Third Hospital, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: This study aimed to develop a deep learning-based framework for simultaneously generating lung perfusion and ventilation images from three-dimensional computed tomography (3D CT) images.
M...

Unsupervised Task-Specific Histology Image Stain Standardization and Crypt Detection for Evaluating Normal Tissue Flash Irradiation Response

Authors: Muhammad Ramish Ashraf, Kerriann Casey, Suparna Dutt, Jie Fu, Edward Elliot Graves, Xuejun Gu, Hao Jiang, Brianna Caroline Lau, Billy W Loo, Weiguo Lu, Rakesh Manjappa, Stavros Melemenidis, Erinn Bruno Rankin, Lawrie Skinner, Luis Armando Soto, Murat Surucu, Vignesh Viswanathan, Zi Yang, Amy Shu-Jung Yu

Affiliation: Department of Radiation Oncology, University of Washington and Fred Hutchinson Cancer Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine, Department of Comparative Medicine, Stanford University School of Medicine, Department of Radiation Oncology, Stanford University Cancer Center

Abstract Preview: Purpose: The intestine is a classical preclinical model for studying radiation injury, and histological quantification of intestinal crypts is a key assay for assessing this response. However, substan...