Search Submissions πŸ”Ž

Results for "binary classification": 5 found

Artificial Intelligence (AI)-Driven Automatic Contour Quality Assurance (QA) with Uncertainty Quantification

Authors: Steve B. Jiang, Dan Nguyen, Chenyang Shen, Fan-Chi F. Su, Jiacheng Xie, Shunyu Yan, Daniel Yang, Ying Zhang, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, The University of Texas at Dallas

Abstract Preview: Purpose: Accurate delineation of treatment targets and organs-at-risk is crucial for radiotherapy. Despite significant progress in artificial intelligence (AI)-based automatic segmentation tools, effi...

Binary Classification of Lymphedema in 3DCRT Patients Using Machine Learning on 3D Dose Distribution Data

Authors: Jee Suk Chang, Hojin Kim, Jin Sung Kim, Jaehyun Seok

Affiliation: Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Department of Integrative Medicine

Abstract Preview: Purpose: This study aims to leverage 3D dose distribution data to develop a machine learning model capable of accurately predicting lymphedema occurrence in patients undergoing 3D conformal radiation ...

Evaluating Supervised Learning Models for Binary Classification of Radiomic Data in Predicting Head and Neck Cancer Treatment Outcomes

Authors: Theodore Higgins Arsenault, Kyle O'Carroll, Christian Erik Petersen, Alex T. Price, Meiying Xing

Affiliation: University Hospitals Seidman Cancer Center

Abstract Preview: Purpose: To assess the performance of various supervised learning models’ ability to predict binary classification of radiomic data for head and neck (H&N) cancer treatment outcomes.
Methods: Using...

Knowledge-Informed Deep Learning for Accurate and Interpretable Extracapsular Extension Detection in Head and Neck Squamous Cell Carcinoma

Authors: William N. Duggar, Amirhossein Eskorouchi, Haifeng Wang

Affiliation: Mississippi State University, University of Mississippi Medical Center

Abstract Preview: Purpose:
Extracapsular extension (ECE) in lymph nodes represents a critical prognostic factor in head and neck squamous cell carcinoma (HNSCC), bearing important implications for staging, treatment...

Two-Stage Clustering and Auto Machine Learning to Predict Chemoradiation Response in Tumor Subregions on FDG PET for La-NSCLC

Authors: Stephen R. Bowen, Shijun Chen, Chunyan Duan, Daniel S. Hippe, Qiantuo Liu, Qianqian Tong, Jiajie Wang, Shouyi Wang, Faisal Yaseen

Affiliation: The University of Texas at Austin, Tongji University, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Fred Hutchinson Cancer Center, University of Texas at Arlington

Abstract Preview: Purpose: Tumor subregion clustering and prediction of region-specific response can augment assessments and adaptive treatment decisions. A modeling framework was constructed to predict chemoradiation ...