Authors: Steve B. Jiang, Dan Nguyen, Chenyang Shen, Fan-Chi F. Su, Jiacheng Xie, Shunyu Yan, Daniel Yang, Ying Zhang, You Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, The University of Texas at Dallas
Abstract Preview: Purpose: Accurate delineation of treatment targets and organs-at-risk is crucial for radiotherapy. Despite significant progress in artificial intelligence (AI)-based automatic segmentation tools, effi...
Authors: Jee Suk Chang, Hojin Kim, Jin Sung Kim, Jaehyun Seok
Affiliation: Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Department of Integrative Medicine
Abstract Preview: Purpose: This study aims to leverage 3D dose distribution data to develop a machine learning model capable of accurately predicting lymphedema occurrence in patients undergoing 3D conformal radiation ...
Authors: Theodore Higgins Arsenault, Kyle O'Carroll, Christian Erik Petersen, Alex T. Price, Meiying Xing
Affiliation: University Hospitals Seidman Cancer Center
Abstract Preview: Purpose: To assess the performance of various supervised learning modelsβ ability to predict binary classification of radiomic data for head and neck (H&N) cancer treatment outcomes.
Methods: Using...
Authors: William N. Duggar, Amirhossein Eskorouchi, Haifeng Wang
Affiliation: Mississippi State University, University of Mississippi Medical Center
Abstract Preview: Purpose:
Extracapsular extension (ECE) in lymph nodes represents a critical prognostic factor in head and neck squamous cell carcinoma (HNSCC), bearing important implications for staging, treatment...
Authors: Stephen R. Bowen, Shijun Chen, Chunyan Duan, Daniel S. Hippe, Qiantuo Liu, Qianqian Tong, Jiajie Wang, Shouyi Wang, Faisal Yaseen
Affiliation: The University of Texas at Austin, Tongji University, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Fred Hutchinson Cancer Center, University of Texas at Arlington
Abstract Preview: Purpose: Tumor subregion clustering and prediction of region-specific response can augment assessments and adaptive treatment decisions. A modeling framework was constructed to predict chemoradiation ...