Search Submissions πŸ”Ž

Results for "cross domain": 23 found

A Framework for the Standardization of Radiomics Classes in the Presence of Blur and Noise

Authors: Huay Din, Grace Jianan Gang, Grace Hyun Kim, Michael F. McNitt-Gray, Joseph W. Stayman, Yijie Yuan

Affiliation: Johns Hopkins University, John Hopkins University, University of Pennsylvania, David Geffen School of Medicine at UCLA

Abstract Preview: Purpose:
Radiomics rely on quantitative features to discern underlying biological signatures. However, feature dependence on the imaging systems themselves hampers the creation of reproducible and ...

A SAM-Guided and Match-Based Semi-Supervised Segmentation Framework for Medical Imaging

Authors: Weiguo Lu, Jax Luo, Xiaoxue Qian, Hua-Chieh Shao, Guoping Xu, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, Harvard Medical School

Abstract Preview: Purpose:
Semi-supervised segmentation leverages sparse annotation information to learn rich representations from combined labeled and label-less data for segmentation tasks. This study leverages th...

Comparative Evaluation of Nn-Unet Models for Radiotherapy Dose Prediction Using the Head and Neck Cancer Patients

Authors: Theodore Higgins Arsenault, Beatriz Guevara, Rojano Kashani, Raymond F. Muzic, Gisele Castro Pereira, Alex T. Price

Affiliation: University Hospitals Seidman Cancer Center, Case Western Reserve University Department of Biomedical Engineering

Abstract Preview: Purpose: Accurate dose prediction in radiotherapy is essential for treatment planning. This study evaluates four nnUnet-based models using the OpenKBP head and neck dataset: a baseline model (Model 1)...

Deep Learning-Based Fast CBCT Imaging with Orthogonal X-Ray Projections for Gynecological Cancer Radiotherapy

Authors: Beth Bradshaw Ghavidel, Chih-Wei Chang, Yuan Gao, Priyanka Kapoor, Shaoyan Pan, Junbo Peng, Richard L.J. Qiu, Jill Remick, Justin R. Roper, Zhen Tian, Xiaofeng Yang

Affiliation: Whinship Cancer Institute, Emory University, Emory University, University of Chicago, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Current cone-beam computed tomography (CBCT) typically requires no less than 200 degrees of angular projections, which prolongs scanning time and increases radiation exposure. To address thes...

Development of Hi-C Based DNA Geometry and Early DNA Damage Evaluation: A Topas-Nbio Study

Authors: Alejandro Bertolet, Isaac Meyer, Harald Paganetti, Jan PO Schuemann, Wook-Geun Shin

Affiliation: Massachusetts General Hospital, Massachusetts General Hospital and Harvard Medical School

Abstract Preview: Purpose: To develop a methodology for Monte Carlo modeling of cell-specific DNA geometries based on Hi-C data using TOPAS-nBio, and to evaluate early DNA damage distributions.
Methods: Hi-C data of...

Dual-Domain Neural Network Cone-Beam CT Correction for Online Adaptive Proton Therapy

Authors: Daniel H. Bushe, Arthur Lalonde, Hoyeon Lee, Harald Paganetti, Brian Winey

Affiliation: Universite de Montreal, Massachusetts General Hospital, Massachusetts General Hospital and Harvard Medical School, University of Hong Kong

Abstract Preview: Purpose: Improving the precision and fidelity of daily volumetric imaging is essential for enabling adaptive proton therapy (APT). While cone-beam CT (CBCT) provides daily volumetric imaging, their ut...

Enhancing Synthetic Pelvic CT Images from CBCT Using Vision Transformer with Adaptive Fourier Neural Operators

Authors: Rashmi Bhaskara, Oluwaseyi Oderinde

Affiliation: Purdue University

Abstract Preview: Purpose: This study proposes a novel approach to overcoming CBCT image quality limitations by developing an improved synthetic CT (sCT) generation method based on a CycleGAN architecture using Vision ...

Evaluating Tumor Shrinkage Using Fractionated Radiotherapy: A Mixed Finite Element Method (FEM) for Free Boundary Problem

Authors: Xianjin Dai, PhD, Xiang Wan, Lei Xing, Qiuyun Xu, Lewei Zhao, Zeyu Zhou

Affiliation: Department of Radiation Oncology, Stanford University, Carl Zeiss X-ray Microscopy, Department of Mathematics and Statistics, Loyola University Chicago, Department of Radiation Oncology, City of Hope National Medical Center

Abstract Preview: Purpose: The purpose of this study is to examine and quantify tumor shrinkage over time in response to fractionated radiotherapy. We seek to establish a predictive model that can provide a systematic ...

Fine-Tuning AI-Based Generative Models for Small-Sample Glioma MRI Generation.

Authors: Xiangli Cui, Chunyan Fu, Man Hu, Wanli Huo, Jingyu Liu, Jianguang Zhang, Yingying Zhang, Shanyang Zhao

Affiliation: Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, the Zhejiang-New Zealand Joint Vision-Based Intelligent Metrology Laboratory, College of Information Engineering, China Jiliang University, Departments of Radiation Oncology, Zibo Wanjie Cancer Hospital, Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Department of Oncology, Xiangya Hospital, Central South University, College of Information Engineering, China Jiliang University, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences

Abstract Preview: Purpose: To quantify the impact of fine-tuning strategies for pre-trained AI image generation models on glioma MRI image quality and observer performance, and to determine the optimal fine-tuning conf...

High-Resolution Limited-Angle CBCT Image Reconstruction for Non-Coplanar Radiation Therapy Via Dual-Domain Ordered-Subset Neural Representation with Prior Embedding (DDOS-NeRP)

Authors: Yu Gao, Lei Xing, Siqi Ye

Affiliation: Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose:
Limited-angle CBCT (LA-CBCT) scans are often the only option for non-coplanar radiation therapy to prevent potential mechanical collisions. However, the consecutive angular occlusion of pr...

Incorporating Cyclic Group Equivariance into Deep Learning for Reliable Reconstruction of Rotationally Symmetric Tomography Systems

Authors: Fang-Fang Yin, Lei Zhang, Yaogong Zhang

Affiliation: Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Rotational symmetry is an inherent property of many tomography systems (e.g., CT, PET, SPECT), arising from the circular arrangement or rotation of detectors. This study revisits the image re...

Integrating Clinical Knowledge Via Llms for Precise Organ-at-Risk Segmentation in Pancreatic Cancer SBRT

Authors: Karyn A Goodman, Yang Lei, Tian Liu, Pretesh Patel, Jing Wang, Kaida Yang, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: This study aims to improve organ-at-risk (OAR) segmentation in pancreatic cancer stereotactic body radiotherapy (SBRT) by integrating clinical guidelines into deep learning workflows. We use ...

Integrating Foundation Model with Self-Supervised Learning for Brain Lesion Segmentation with Multimodal and Diverse MRI Datasets

Authors: Zong Fan, Fan Lam, Hua Li, Rita Huan-Ting Peng, Yuan Yang

Affiliation: University of Illinois at Urbana Champaign, University of Illinois at Urbana-Champaign, Washington University School of Medicine, University of Illinois Urbana-Champaign

Abstract Preview: Purpose: Accurate lesion segmentation in MRI is critical for early diagnosis, treatment planning, and monitoring disease progression in various neurological disorders. Cross-site MRI data can alleviat...

Knowledge-Informed Deep Learning for Accurate and Interpretable Extracapsular Extension Detection in Head and Neck Squamous Cell Carcinoma

Authors: William N. Duggar, Amirhossein Eskorouchi, Haifeng Wang

Affiliation: Mississippi State University, University of Mississippi Medical Center

Abstract Preview: Purpose:
Extracapsular extension (ECE) in lymph nodes represents a critical prognostic factor in head and neck squamous cell carcinoma (HNSCC), bearing important implications for staging, treatment...

Large Language Model-Driven Agentic System for Collaborative Decision-Making in Radiotherapy Treatment Planning

Authors: Yang Sheng, Qingrong Jackie Wu, Qiuwen Wu, Xin Wu, Dongrong Yang

Affiliation: Duke University Medical Center

Abstract Preview: Purpose:
This study aims to leverage large language model (LLMs) to develop a human-in-the-loop agentic framework, enhancing the efficiency of treatment planning in radiotherapy.
Methods:
A L...

Multi-Vendor Validation of a Deep Learning-Based Synthetic CT Generation Model for MR-Only Radiotherapy Planning in the Pelvis

Authors: Gregory Bolard, Rabten Datsang, Sarah Ghandour, Timo Kiljunen, Pauliina Paavilainen, Sami Suilamo, Katlin Tiigi

Affiliation: Turku University Hospital, Virginia Commonwealth University, MVision AI, North Estonia Medical Centre, Docrates Cancer Center, Hopital Riviera-Chablais

Abstract Preview: Purpose: To verify the performance of a vendor-neutral deep learning model for synthetic CT generation from T2-weighted and balanced steady-state MR sequences to support both MR-only simulation and MR...

Opentps: An Open-Source Radiotherapy Treatment Planning System to Foster Research, Innovation, and Education in Medical Physics

Authors: Ana Maria Barragan Montero, Damien Dasnoy, Sylvain Deffet, Valentine Dormal, Colin Gaban, Melanie Ghislaine, Valentin Hamaide, Guillaume Janssens, John A. Lee, Eliot Peeters, Danah Pross, Luciano Rivetti, Benjamin Roberfroid, Romain Schyns, Kevin Souris, Edmond S. Sterpin, Sophie Wuyckens

Affiliation: Ion Beam Applications SA, Hospital Riviera-Chablais, UCLouvain, Multitel, UniversitΓ© Catholique de Louvain, IBA, Faculty of Mathematics and Physics, University of Ljubljana, Universite Catholique de Louvain

Abstract Preview: Purpose: Treatment planning systems (TPSs) are essential for simulating and optimizing radiotherapy treatments. However, clinical TPSs are expensive software commercialized by private companies and of...

Preliminary Evaluation of a GpΟ„-Based Medical Physics Education Tool

Authors: Ramesh Boggula, Jay W. Burmeister, Michael Joiner

Affiliation: Wayne State University, Karmanos Cancer Center, Gershenson ROC, Wayne State University School of Medicine

Abstract Preview: Purpose: Recent advances in large language models such as ChatGPT offer new possibilities for supplementing traditional teaching methods. In this study, we developed a custom GPT-powered tool freely a...

Rapid CBCT Imaging with Ultra-Sparse X-Ray Projections for Head & Neck Cancer Radiotherapy

Authors: Hania A. Al-Hallaq, Chih-Wei Chang, Anees H. Dhabaan, Yuan Gao, Shaoyan Pan, Junbo Peng, Richard L.J. Qiu, Keyur Shah, Sibo Tian, Zhen Tian, Xiaofeng Yang, David Yu, Jun Zhou

Affiliation: Emory University, Whinship Cancer Institute, Emory University, University of Chicago, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Traditional cone-beam computed tomography (CBCT) often requires multiple angular projections, increasing radiation exposure and extending scanning times, which may lead to heightened patient ...

Research on Multi-Organ Segmentation Based on Cross-Domain Transfer Learning

Authors: Jiali Gong, Yi Guo, Chi Han, Wanli Huo, Hongdong Liu, Zhao Peng, Yaping Qi, Zhaojuan Zhang

Affiliation: Department of Radiotherapy, cancer center, The First Affiliated Hospital of Fujian Medical University, Department of Oncology, Xiangya Hospital, Central South University, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, China Jiliang University, Division of lonizing Radiation Metrology, National Institute of Metrology, Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, the Zhejiang-New Zealand Joint Vision-Based Intelligent Metrology Laboratory, College of Information Engineering, China Jiliang University

Abstract Preview: Purpose: To address overfitting from limited training data in multi-organ segmentation, an efficient transfer learning framework is proposed. It reduces reliance on training samples, enabling a single...

Segmentation Regularized Registration Training Improves Multi-Domain Generalization of Deformable Image Registration for MR-Guided Prostate Radiotherapy

Authors: Lando S. Bosma, Victoria Brennan, Nicolas Cote, ChengCheng Gui, Nima Hassan Rezaeian, Jue Jiang, Sudharsan Madhavan, Josiah Simeth, Neelam Tyagi, Harini Veeraraghavan, Michael J Zelefsky

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, NYU Langone Health, University Medical Center Utrecht, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Deep learning-based deformable image registration (DIR) models often lack robustness when applied to datasets with differing imaging characteristics. We aimed to (1) improve registration netw...

Towards Achieving Quantitative Attenuation Values in CT with Energy-Integrated and Photon-Counting Detectors

Authors: Zijia Guo, Viktor Haase, Michael F. McNitt-Gray, Frederic Noo

Affiliation: Siemens Healthineers, University of Utah, David Geffen School of Medicine at UCLA

Abstract Preview: Purpose: The attenuation values in CT hold strong potential for disease diagnosis. However, they lack reliability, which has limited their use to clinical trials where variability can be controlled. S...

Uncertainty-Guided Cross-Domain Adaptation for Unsupervised Medical Image Segmentation

Authors: Yunxiang Li, Weiguo Lu, Xiaoxue Qian, Hua-Chieh Shao, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Curating high-quality, labeled data for medical image segmentation can be challenging and costly, considering the existence of various image domains with differing modalities/protocols. Cr...