Search Submissions πŸ”Ž

Results for "decision support": 31 found

A Combination of Radiomics and Dosiomics for Gross Tumor Volume Regression in Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy (PULSAR)

Authors: Hao Peng, Yajun Yu

Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Personalized ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) is a novel ablative radiation dosing scheme developed by our institution. This study aims to establish a regression...

A Multi-Agent Approach for Fully Automated Nephrometry Feature Extraction in CT

Authors: Matthew S Brown, Joshua Genender, John M. Hoffman, Gabriel Melendez-Corres, Muhammad W. Wahi-Anwar

Affiliation: David Geffen School of Medicine at UCLA, UCLA Department of Radiology

Abstract Preview: Purpose: Renal lesions are evaluated using scoring systems based on visual assessments and manual measurements. The purpose of this work is to develop a multi-agent system for automated anatomic landm...

AI-Based SBRT Dose Prediction Directly from Diagnostic PET/CT: Applications for Multi-Disciplinary Lung Cancer Care

Authors: Pradeep Bhetwal, Wookjin Choi, Adam Dicker, Rupesh Ghimire, Yingcui Jia, Lauren Nkwonta, Yevgeniy Vinogradskiy, Wentao Wang, Maria Werner-Wasik

Affiliation: Thomas Jefferson University

Abstract Preview: Purpose: Multi-disciplinary clinics are becoming standard of care for patients with lung cancer treated with SBRT. To improve clinical decision support in a multi-disciplinary clinic, it would be bene...

AI-Driven Troubleshooting for Truebeam Systems: Development and Testing of a Gpt-4o Chatbot

Authors: Sean P. Devan, Cory S. Knill, Charles K. Matrosic, Zheng Zhang

Affiliation: University of Michigan

Abstract Preview: Purpose: Physicists troubleshooting machine issues during patient treatments often face high-pressure situations, balancing error codes, resource constraints, and time-sensitive decisions. To streamli...

An Advanced Automated Pipeline for Brain Tumor Segmentation on MRI Images in Gamma Knife Radiotherapy

Authors: Zachery Colbert, Matthew Foote, Michael Huo, Mark Pinkham, Prabhakar Ramachandran, Mihir Shanker

Affiliation: Radiation Oncology, Princess Alexandra Hospital, Ipswich Road, Princess Alexandra Hospital

Abstract Preview: Purpose: The study aimed to develop and implement deep learning-based autosegmentation models for the autosegmentation of four key tumor types: brain metastasis, pituitary adenoma, vestibular schwanno...

Assessing the Impact of Intrafraction Shifts on Critical OAR Doses in a Standardized Spine SBRT Program

Authors: Daniel A. Alexander, Anish Butala, Anthony Austin Kassaee, Neil Malhotra, Ian Messing, Gabrielle W Peters, Ryan M. Scheuermann

Affiliation: Department of Radiation Oncology and Applied Sciences, University of Pennsylvania

Abstract Preview: Purpose: Stereotactic Body Radiation Therapy (SBRT) for spinal metastases uses CBCT-based localization and highly conformal treatment delivery to increase the biologically equivalent dose to the targe...

Automatic Tumor Segmentation and Catheter Detection from MRI for Cervical Cancer Brachytherapy Using Uncertainty-Aware Dual Convolution-Transformer Unet

Authors: Majd Antaki, Rohini Bhatia, Gayoung Kim, Yosef Landman, Junghoon Lee, Akila N. Viswanathan

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Physics and Advanced Development Elekta

Abstract Preview: Purpose: Brachytherapy is a standard radiation therapy approach for cervical cancer, which directly delivers radiation source to the tumor using catheters. Treatment planning requires identification o...

Can AI Agent be a Good Judge for Online Adaptive Radiotherapy Plan Evaluation?

Authors: Steve B. Jiang, Mu-Han Lin, Dan Nguyen, Beiqian Qi, Daniel Yang, Ying Zhang

Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Online adaptive radiotherapy (oART) is a resource-intensive workflow requiring significant time and effort required from clinicians, particularly for the online evaluation of plan quality....

Chat with Oncology Information System Via Large Language Model

Authors: Michael Dohopolski, Xuejun Gu, Hao Jiang, Steve B. Jiang, Christopher Kabat, Jingying Lin, Weiguo Lu, Michael Tang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Neuralrad LLC, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose: To streamline access to clinical data stored in Oncology Information Systems such as MOSAIQ or ARIA, we developed an AI-powered chatbot capable of querying, summarizing, and interactively ans...

Compressed Sensing Enhanced Radiomic Feature Selection for Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy (PULSAR)

Authors: Hao Peng, Yajun Yu

Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Personalized ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) is a new treatment paradigm pioneered by our institution. But the early decision-making process in PULSAR is challe...

Decision Support for Adaptive Vs Non-Adaptive SBRT for Left-Sided Adrenal Tumors

Authors: Robbie Beckert, Austen N. Curcuru, Farnoush Forghani, Yi Huang, Geoffrey D. Hugo, Hyun Kim, Eric Laugeman, Luke Christian Marut, Thomas R. Mazur, Allen Mo, Emily Sigmund

Affiliation: Washington University in St. Louis School of Medicine, WashU Medicine, Washington University School of Medicine in St. Louis, Wash U Medicine, Washington University in St. Louis, Department of Radiation Oncology, Washington University School of Medicine in St. Louis

Abstract Preview: Purpose: Adaptive SBRT is resource intensive, requiring additional personnel for online planning, and should be reserved for cases where it is most beneficial. The purpose of this research is to creat...

Evaluating Supervised Learning Models for Binary Classification of Radiomic Data in Predicting Head and Neck Cancer Treatment Outcomes

Authors: Theodore Higgins Arsenault, Kyle O'Carroll, Christian Erik Petersen, Alex T. Price, Meiying Xing

Affiliation: University Hospitals Seidman Cancer Center

Abstract Preview: Purpose: To assess the performance of various supervised learning models’ ability to predict binary classification of radiomic data for head and neck (H&N) cancer treatment outcomes.
Methods: Using...

Feasibility Study of Deep Learning-Based MRI-to-PET Generation for Rectal Cancer: Overall Survival Prediction and Pathological Complete Response Assessment

Authors: Weigang Hu, Zhenhao Li, Jiazhou Wang, Xiaojie Yin, Zhen Zhang

Affiliation: Fudan University Shanghai Cancer Center

Abstract Preview: Purpose:
This study aims to develop and validate a novel deep learning method to generate synthetic PET images for rectal cancer from MRI data. By incorporating metabolic information from the synth...

From AI Towards Decision Support Frameworks in Radiotherapy: Moving Models in into Clinical Support Tools

Authors: Sanne van Dijk

Affiliation: UMC-Groningen

Abstract Preview: N/A...

Generating Synthetic Positron Emission Tomography from Computed Tomography Using Lightweight Diffusion Model for Head and Neck Cancer

Authors: Rashmi Bhaskara, Shravan Bhavsar, Ananth Grama, Oluwaseyi Oderinde, Shourya Verma

Affiliation: Purdue University

Abstract Preview: Generating Synthetic Positron Emission Tomography from Computed Tomography using Lightweight Diffusion Model for Head and Neck Cancer
Purpose: To generate synthetic PET tumor avidity segments direc...

Gradient-Based Radiomics for Outcome Prediction and Decision-Making in Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy (PULSAR): A Preliminary Study

Authors: Michael Dohopolski, Jiaqi Liu, Hao Peng, Robert Timmerman, Zabi Wardak, Haozhao Zhang

Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
This study introduces a gradient-based radiomics framework to enhance outcome prediction in Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy (PULSAR) for brain metastases...

Intelligent Black Box Recording for Radiation Therapy: Feasibility Study of Vision-Language Models for Treatment Monitoring.

Authors: Wookjin Choi, James M. Lamb, David Romanofski, David H. Thomas, Yevgeniy Vinogradskiy

Affiliation: Drexel, Department of Radiation Oncology, University of California, Los Angeles, Thomas Jefferson University

Abstract Preview: Purpose: To develop an intelligent Black Box Recorder for radiation therapy (RT) that monitors patient treatments using a vision language model.
Methods: The system captures synchronized screen rec...

Investigating the Multimodal Fusion Techniques to Improve Prediction Accuracy of Biochemical Recurrence of Prostate Cancer

Authors: Clint Bahler, Ruchika Reddy Chimmula, Harrison Louis Love, Oluwaseyi Oderinde, Courtney Yong

Affiliation: Purdue University, Department of Urology, Indiana University School of Medicine, Advanced Molecular Imaging in Radiotherapy (AdMIRe) Research Laboratory, School of Health Sciences, Purdue University

Abstract Preview: Purpose: Prostate cancer (PCa) is a common malignancy in men, and predicting biochemical recurrence (BCR) is crucial for guiding treatment decisions. Integrating multimodal data, including clinical, i...

Key Tumor Volume Zones for Advancing the Radiomics-Based Distant Recurrence Prediction

Authors: Ryan Alden, Tithi Biswas, Kaushik Halder, Felix Maria-Joseph, Michael Mix, Rihan Podder, Tarun Kanti Podder

Affiliation: SUNY Upstate Medical University, IIT-Roorkee, University of Florida

Abstract Preview: Purpose: Radiomics feature-based model for predicting distant recurrence can potentially provide critical insight for clinical decision-making and assistance in treatment strategies. This study focuse...

Machine Learning Model for Early Prediction of Chemoradiotherapy Response in Oropharyngeal Cancer Patients

Authors: Waleed Mutlaq Almutairi, Ke Colin Huang, Vishwas Mukundan, Christopher F. Njeh, Oluwaseyi Oderinde, Yong Yue

Affiliation: Purdue University, Indiana University School of Medicine, Department of Radiation Oncology, Advanced Molecular Imaging in Radiotherapy (AdMIRe) Research Laboratory, Purdue University, West Lafayette, Indiana, USA

Abstract Preview: Purpose:
This study aimed to develop a machine learning (ML) model for early prediction of chemoradiotherapy (CRT) response in order to enhance personalized treatment selection for oral or orophary...

Mitigating Data-Driven Uncertainty in Machine Learning-Based Radiotherapy Outcome Prediction

Authors: Ali Ajdari, Alice Bondi, Thomas R. Bortfeld, Gregory Buti, Xinru Chen, Zhongxing Liao, Antony John Lomax, Ting Xu

Affiliation: The University of Texas MD Anderson Cancer Center, Department Of Radiation Oncology, Massachusetts General Hospital (MGH), Massachusetts General Hospital & Harvard Medical School, Paul Scherrer Institut, ETH Zurich

Abstract Preview: Title: Addressing Imaging and Biomarker-driven Uncertainty in Machine Learning-based Radiotherapy Outcome Prediction
Alice Bondi, Gregory Buti, Antony Lomax, Thomas Bortfeld, Xinru Chen, Ting Xu, Z...

Muilt-Instance Learning Model with 2D and 3D Features Representation and Transformer-Based Prediction for FDG PET Tumor Chemoradiation Response of La-NSCLC

Authors: Stephen R. Bowen, Chunyan Duan, Daniel S. Hippe, Qiantuo Liu, Jiajie Wang, Shouyi Wang, Faisal Yaseen, Han Zhou

Affiliation: Tongji University, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Fred Hutchinson Cancer Center, University of Texas at Arlington

Abstract Preview: Purpose: Predicting the effects of the spatial-temporal tumor response to chemoradiation can assist in adjusting radiation dose and support clinical decision-making in radiotherapy. A multi-instance l...

Multimodal Attention Fusion Model Leveraging Structured and Unstructured EHR Data for Hospital Readmission Prediction in Head and Neck Cancer

Authors: Shreyas Anil, Jason Chan, Arushi Gulati, Yannet Interian, Hui Lin, Benedict Neo, Andrea Park, Bhumika Srinivas

Affiliation: Department of Otolaryngology Head and Neck Surgery, University of California San Francisco, Department of Data Science, University of San Francisco, Department of Radiation Oncology, University of California San Francisco

Abstract Preview: Purpose: Hospital readmission prediction models often rely on structured Electronic Health Record (EHR) data, overlooking critical insights from unstructured clinical notes. This study presents a mult...

Navigating Radiotherapy Ethics with Generative AI: Geoffrey Hinton's Warnings Regarding Relying Totally on Insights from AI Models

Authors: James Chun Lam Chow, Kay Li

Affiliation: University of Toronto, Princess Margaret Cancer Centre

Abstract Preview: Purpose: This study explores the caution needed when using Generative AI for assessing radiotherapy ethics, highlighting Geoffrey Hinton’s warnings about the risks of relying solely on AI for ethical ...

Optimizing Fractionation Schedules for De-Escalation Radiotherapy in Head and Neck Cancers Using Deep Reinforcement Learning

Authors: Zhongjie Lu

Affiliation: Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine

Abstract Preview: Purpose: Patients with locally-advanced head and neck squamous cell carcinomas(HNSCCs), particularly those related to human papillomavirus(HPV), often achieve good locoregional control(LRC), yet they ...

Predicting Brain V60% in Linac-Based Single-Isocenter-Multiple-Targets (SIMT) Stereotactic Radiosurgery Using Machine Learning

Authors: John Ginn, Zhuoyun Huang, Yongbok Kim, Ke Lu, Chunhao Wang, Yibo Xie, Zhenyu Yang, Jingtong Zhao

Affiliation: Duke University, Duke Kunshan University

Abstract Preview: Purpose: This study aims to develop and validate a machine learning model for predicting V60%, a critical dosimetric metric in LINAC-based Single-Isocenter-Multiple-Targets (SIMT) stereotactic radiosu...

Reasoning-Driven Prompts Improve EHR-Based Outcome Prediction and Clinical Interpretability in Large Language Models

Authors: Shreyas Anil, Jason Chan, Arushi Gulati, Yannet Interian, Hui Lin, Benedict Neo, Andrea Park, Bhumika Srinivas

Affiliation: Department of Otolaryngology Head and Neck Surgery, University of California San Francisco, Department of Data Science, University of San Francisco, Department of Radiation Oncology, University of California San Francisco, University of San Francisco

Abstract Preview: Purpose: As Large Language Models (LLMs) continue to evolve, their ability to analyze Electronic Health Record (EHR) notes for clinical decision support expands. Chain of Thought (COT) reasoning, an e...

The GYN Webapp: A Centralized Tool for Enhancing HDR Brachytherapy Treatment Quality and Clinical Outcomes

Authors: Kevin Albuquerque, Ti Bai, Yesenia Gonzalez, Brian A. Hrycushko, Zohaib Iqbal, Paul M. Medin, Shanshan Tang

Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Cervical cancer remains one of the most common and significant gynecological (GYN) malignancies globally, often presenting at advanced stages where radiation therapy and high-dose-rate (HDR) ...

The Role of AI-Based Analysis in Segmenting Sealing Zones and Tissue Characterization

Authors: Sara Allievi, Stefano Bonvini, Gloria Miori, Laura Orsingher, Andrea Passerini, Igor Raunig, Daniele Ravanelli, Erich Robbi, Annalisa Trianni

Affiliation: Department of Information Engineering and Computer Science, University of Trento, Vascular Surgery Department, S.Chiara Hospital, APSS, Medical Physics Department, S.Chiara Hospital, APSS

Abstract Preview: Purpose:
This study evaluates the performance of an AI-driven tool in segmenting and analyzing tissue composition in abdominal aortic aneurysm (AAA) patients, specifically focusing on the sealing z...

Towards AI Decision-Support for Online Adaptive Radiotherapy (oART): A Preliminary Study on CBCT-Guided Post-Prostatectomy Oart

Authors: Michael Cummings, Olga M. Dona Lemus, Hana Mekdash, Tyler Moran, Alexander R Podgorsak, Sean M. Tanny, Matthew J. Webster, Lexiang Yang, Dandan Zheng, Yuwei Zhou, Xiaofeng Zhu

Affiliation: Department of Radiation Oncology, University of Rochester, University of Miami, Inova Schar Cancer Institute, University of Rochester

Abstract Preview: Purpose: oART is revolutionizing radiotherapy by allowing treatment plans to be adjusted based on daily imaging, improving targeting precision and potentially enhancing patient outcomes. However, its ...

Two-Stage Clustering and Auto Machine Learning to Predict Chemoradiation Response in Tumor Subregions on FDG PET for La-NSCLC

Authors: Stephen R. Bowen, Shijun Chen, Chunyan Duan, Daniel S. Hippe, Qiantuo Liu, Qianqian Tong, Jiajie Wang, Shouyi Wang, Faisal Yaseen

Affiliation: The University of Texas at Austin, Tongji University, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Fred Hutchinson Cancer Center, University of Texas at Arlington

Abstract Preview: Purpose: Tumor subregion clustering and prediction of region-specific response can augment assessments and adaptive treatment decisions. A modeling framework was constructed to predict chemoradiation ...