Authors: Hao Peng, Yajun Yu
Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center
Abstract Preview: Purpose: Personalized ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) is a novel ablative radiation dosing scheme developed by our institution. This study aims to establish a regression...
Authors: Matthew S Brown, Joshua Genender, John M. Hoffman, Gabriel Melendez-Corres, Muhammad W. Wahi-Anwar
Affiliation: David Geffen School of Medicine at UCLA, UCLA Department of Radiology
Abstract Preview: Purpose: Renal lesions are evaluated using scoring systems based on visual assessments and manual measurements. The purpose of this work is to develop a multi-agent system for automated anatomic landm...
Authors: Pradeep Bhetwal, Wookjin Choi, Adam Dicker, Rupesh Ghimire, Yingcui Jia, Lauren Nkwonta, Yevgeniy Vinogradskiy, Wentao Wang, Maria Werner-Wasik
Affiliation: Thomas Jefferson University
Abstract Preview: Purpose: Multi-disciplinary clinics are becoming standard of care for patients with lung cancer treated with SBRT. To improve clinical decision support in a multi-disciplinary clinic, it would be bene...
Authors: Sean P. Devan, Cory S. Knill, Charles K. Matrosic, Zheng Zhang
Affiliation: University of Michigan
Abstract Preview: Purpose: Physicists troubleshooting machine issues during patient treatments often face high-pressure situations, balancing error codes, resource constraints, and time-sensitive decisions. To streamli...
Authors: Zachery Colbert, Matthew Foote, Michael Huo, Mark Pinkham, Prabhakar Ramachandran, Mihir Shanker
Affiliation: Radiation Oncology, Princess Alexandra Hospital, Ipswich Road, Princess Alexandra Hospital
Abstract Preview: Purpose: The study aimed to develop and implement deep learning-based autosegmentation models for the autosegmentation of four key tumor types: brain metastasis, pituitary adenoma, vestibular schwanno...
Authors: Daniel A. Alexander, Anish Butala, Anthony Austin Kassaee, Neil Malhotra, Ian Messing, Gabrielle W Peters, Ryan M. Scheuermann
Affiliation: Department of Radiation Oncology and Applied Sciences, University of Pennsylvania
Abstract Preview: Purpose: Stereotactic Body Radiation Therapy (SBRT) for spinal metastases uses CBCT-based localization and highly conformal treatment delivery to increase the biologically equivalent dose to the targe...
Authors: Majd Antaki, Rohini Bhatia, Gayoung Kim, Yosef Landman, Junghoon Lee, Akila N. Viswanathan
Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Physics and Advanced Development Elekta
Abstract Preview: Purpose: Brachytherapy is a standard radiation therapy approach for cervical cancer, which directly delivers radiation source to the tumor using catheters. Treatment planning requires identification o...
Authors: Steve B. Jiang, Mu-Han Lin, Dan Nguyen, Beiqian Qi, Daniel Yang, Ying Zhang
Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center
Abstract Preview: Purpose:
Online adaptive radiotherapy (oART) is a resource-intensive workflow requiring significant time and effort required from clinicians, particularly for the online evaluation of plan quality....
Authors: Michael Dohopolski, Xuejun Gu, Hao Jiang, Steve B. Jiang, Christopher Kabat, Jingying Lin, Weiguo Lu, Michael Tang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Neuralrad LLC, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose: To streamline access to clinical data stored in Oncology Information Systems such as MOSAIQ or ARIA, we developed an AI-powered chatbot capable of querying, summarizing, and interactively ans...
Authors: Hao Peng, Yajun Yu
Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center
Abstract Preview: Purpose: Personalized ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) is a new treatment paradigm pioneered by our institution. But the early decision-making process in PULSAR is challe...
Authors: Robbie Beckert, Austen N. Curcuru, Farnoush Forghani, Yi Huang, Geoffrey D. Hugo, Hyun Kim, Eric Laugeman, Luke Christian Marut, Thomas R. Mazur, Allen Mo, Emily Sigmund
Affiliation: Washington University in St. Louis School of Medicine, WashU Medicine, Washington University School of Medicine in St. Louis, Wash U Medicine, Washington University in St. Louis, Department of Radiation Oncology, Washington University School of Medicine in St. Louis
Abstract Preview: Purpose: Adaptive SBRT is resource intensive, requiring additional personnel for online planning, and should be reserved for cases where it is most beneficial. The purpose of this research is to creat...
Authors: Theodore Higgins Arsenault, Kyle O'Carroll, Christian Erik Petersen, Alex T. Price, Meiying Xing
Affiliation: University Hospitals Seidman Cancer Center
Abstract Preview: Purpose: To assess the performance of various supervised learning modelsβ ability to predict binary classification of radiomic data for head and neck (H&N) cancer treatment outcomes.
Methods: Using...
Authors: Weigang Hu, Zhenhao Li, Jiazhou Wang, Xiaojie Yin, Zhen Zhang
Affiliation: Fudan University Shanghai Cancer Center
Abstract Preview: Purpose:
This study aims to develop and validate a novel deep learning method to generate synthetic PET images for rectal cancer from MRI data. By incorporating metabolic information from the synth...
Authors: Sanne van Dijk
Affiliation: UMC-Groningen
Abstract Preview: N/A...
Authors: Rashmi Bhaskara, Shravan Bhavsar, Ananth Grama, Oluwaseyi Oderinde, Shourya Verma
Affiliation: Purdue University
Abstract Preview: Generating Synthetic Positron Emission Tomography from Computed Tomography using Lightweight Diffusion Model for Head and Neck Cancer
Purpose: To generate synthetic PET tumor avidity segments direc...
Authors: Michael Dohopolski, Jiaqi Liu, Hao Peng, Robert Timmerman, Zabi Wardak, Haozhao Zhang
Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center
Abstract Preview: Purpose:
This study introduces a gradient-based radiomics framework to enhance outcome prediction in Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy (PULSAR) for brain metastases...
Authors: Wookjin Choi, James M. Lamb, David Romanofski, David H. Thomas, Yevgeniy Vinogradskiy
Affiliation: Drexel, Department of Radiation Oncology, University of California, Los Angeles, Thomas Jefferson University
Abstract Preview: Purpose: To develop an intelligent Black Box Recorder for radiation therapy (RT) that monitors patient treatments using a vision language model.
Methods: The system captures synchronized screen rec...
Authors: Clint Bahler, Ruchika Reddy Chimmula, Harrison Louis Love, Oluwaseyi Oderinde, Courtney Yong
Affiliation: Purdue University, Department of Urology, Indiana University School of Medicine, Advanced Molecular Imaging in Radiotherapy (AdMIRe) Research Laboratory, School of Health Sciences, Purdue University
Abstract Preview: Purpose: Prostate cancer (PCa) is a common malignancy in men, and predicting biochemical recurrence (BCR) is crucial for guiding treatment decisions. Integrating multimodal data, including clinical, i...
Authors: Ryan Alden, Tithi Biswas, Kaushik Halder, Felix Maria-Joseph, Michael Mix, Rihan Podder, Tarun Kanti Podder
Affiliation: SUNY Upstate Medical University, IIT-Roorkee, University of Florida
Abstract Preview: Purpose: Radiomics feature-based model for predicting distant recurrence can potentially provide critical insight for clinical decision-making and assistance in treatment strategies. This study focuse...
Authors: Waleed Mutlaq Almutairi, Ke Colin Huang, Vishwas Mukundan, Christopher F. Njeh, Oluwaseyi Oderinde, Yong Yue
Affiliation: Purdue University, Indiana University School of Medicine, Department of Radiation Oncology, Advanced Molecular Imaging in Radiotherapy (AdMIRe) Research Laboratory, Purdue University, West Lafayette, Indiana, USA
Abstract Preview: Purpose:
This study aimed to develop a machine learning (ML) model for early prediction of chemoradiotherapy (CRT) response in order to enhance personalized treatment selection for oral or orophary...
Authors: Ali Ajdari, Alice Bondi, Thomas R. Bortfeld, Gregory Buti, Xinru Chen, Zhongxing Liao, Antony John Lomax, Ting Xu
Affiliation: The University of Texas MD Anderson Cancer Center, Department Of Radiation Oncology, Massachusetts General Hospital (MGH), Massachusetts General Hospital & Harvard Medical School, Paul Scherrer Institut, ETH Zurich
Abstract Preview: Title: Addressing Imaging and Biomarker-driven Uncertainty in Machine Learning-based Radiotherapy Outcome Prediction
Alice Bondi, Gregory Buti, Antony Lomax, Thomas Bortfeld, Xinru Chen, Ting Xu, Z...
Authors: Stephen R. Bowen, Chunyan Duan, Daniel S. Hippe, Qiantuo Liu, Jiajie Wang, Shouyi Wang, Faisal Yaseen, Han Zhou
Affiliation: Tongji University, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Fred Hutchinson Cancer Center, University of Texas at Arlington
Abstract Preview: Purpose: Predicting the effects of the spatial-temporal tumor response to chemoradiation can assist in adjusting radiation dose and support clinical decision-making in radiotherapy. A multi-instance l...
Authors: Shreyas Anil, Jason Chan, Arushi Gulati, Yannet Interian, Hui Lin, Benedict Neo, Andrea Park, Bhumika Srinivas
Affiliation: Department of Otolaryngology Head and Neck Surgery, University of California San Francisco, Department of Data Science, University of San Francisco, Department of Radiation Oncology, University of California San Francisco
Abstract Preview: Purpose: Hospital readmission prediction models often rely on structured Electronic Health Record (EHR) data, overlooking critical insights from unstructured clinical notes. This study presents a mult...
Authors: James Chun Lam Chow, Kay Li
Affiliation: University of Toronto, Princess Margaret Cancer Centre
Abstract Preview: Purpose: This study explores the caution needed when using Generative AI for assessing radiotherapy ethics, highlighting Geoffrey Hintonβs warnings about the risks of relying solely on AI for ethical ...
Authors: Zhongjie Lu
Affiliation: Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine
Abstract Preview: Purpose: Patients with locally-advanced head and neck squamous cell carcinomas(HNSCCs), particularly those related to human papillomavirus(HPV), often achieve good locoregional control(LRC), yet they ...
Authors: John Ginn, Zhuoyun Huang, Yongbok Kim, Ke Lu, Chunhao Wang, Yibo Xie, Zhenyu Yang, Jingtong Zhao
Affiliation: Duke University, Duke Kunshan University
Abstract Preview: Purpose: This study aims to develop and validate a machine learning model for predicting V60%, a critical dosimetric metric in LINAC-based Single-Isocenter-Multiple-Targets (SIMT) stereotactic radiosu...
Authors: Shreyas Anil, Jason Chan, Arushi Gulati, Yannet Interian, Hui Lin, Benedict Neo, Andrea Park, Bhumika Srinivas
Affiliation: Department of Otolaryngology Head and Neck Surgery, University of California San Francisco, Department of Data Science, University of San Francisco, Department of Radiation Oncology, University of California San Francisco, University of San Francisco
Abstract Preview: Purpose: As Large Language Models (LLMs) continue to evolve, their ability to analyze Electronic Health Record (EHR) notes for clinical decision support expands. Chain of Thought (COT) reasoning, an e...
Authors: Kevin Albuquerque, Ti Bai, Yesenia Gonzalez, Brian A. Hrycushko, Zohaib Iqbal, Paul M. Medin, Shanshan Tang
Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center
Abstract Preview: Purpose: Cervical cancer remains one of the most common and significant gynecological (GYN) malignancies globally, often presenting at advanced stages where radiation therapy and high-dose-rate (HDR) ...
Authors: Sara Allievi, Stefano Bonvini, Gloria Miori, Laura Orsingher, Andrea Passerini, Igor Raunig, Daniele Ravanelli, Erich Robbi, Annalisa Trianni
Affiliation: Department of Information Engineering and Computer Science, University of Trento, Vascular Surgery Department, S.Chiara Hospital, APSS, Medical Physics Department, S.Chiara Hospital, APSS
Abstract Preview: Purpose:
This study evaluates the performance of an AI-driven tool in segmenting and analyzing tissue composition in abdominal aortic aneurysm (AAA) patients, specifically focusing on the sealing z...
Authors: Michael Cummings, Olga M. Dona Lemus, Hana Mekdash, Tyler Moran, Alexander R Podgorsak, Sean M. Tanny, Matthew J. Webster, Lexiang Yang, Dandan Zheng, Yuwei Zhou, Xiaofeng Zhu
Affiliation: Department of Radiation Oncology, University of Rochester, University of Miami, Inova Schar Cancer Institute, University of Rochester
Abstract Preview: Purpose: oART is revolutionizing radiotherapy by allowing treatment plans to be adjusted based on daily imaging, improving targeting precision and potentially enhancing patient outcomes. However, its ...
Authors: Stephen R. Bowen, Shijun Chen, Chunyan Duan, Daniel S. Hippe, Qiantuo Liu, Qianqian Tong, Jiajie Wang, Shouyi Wang, Faisal Yaseen
Affiliation: The University of Texas at Austin, Tongji University, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Fred Hutchinson Cancer Center, University of Texas at Arlington
Abstract Preview: Purpose: Tumor subregion clustering and prediction of region-specific response can augment assessments and adaptive treatment decisions. A modeling framework was constructed to predict chemoradiation ...