Authors: Suman Gautam, Tianjun Ma, William Song
Affiliation: Virginia Commonwealth University
Abstract Preview: Purpose: We propose an artificial intelligence (AI)-based method to rapidly predict the patient-specific quality assurance (PSQA) results for magnetic resonance (MR)-guided online adaptive radiation th...
Authors: Eric Chang, Nguyen Phuong Dang, Andrew Lim, Lauren Lukas, Lijun Ma, Yutaka Natsuaki, Zhengzheng Xu, Hualin Zhang
Affiliation: Radiation Oncology, Keck School of Medicine of USC
Abstract Preview: Purpose: Harnessed the power of AI and Deep Learning (DL), Generalized Neural Network models for medical image transformation are trained to predict target images from reference images, often requirin...
Authors: Rani Anne', Wenchao Cao, Yingxuan Chen, Wookjin Choi, Firas Mourtada, Yevgeniy Vinogradskiy
Affiliation: Thomas Jefferson University
Abstract Preview: Purpose: In-room mobile cone-beam CT (CBCT) is emerging to enhance high-dose-rate (HDR) brachytherapy workflow using on-demand imaging. However, metal artifacts from X-ray markers inside gynecological...
Authors: Stephen R. Bowen, Chunyan Duan, Daniel S. Hippe, Qiantuo Liu, Jing Sun, Jiajie Wang, Shouyi Wang, Faisal Yaseen, Xiaojing Zhu
Affiliation: Tongji University, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Shanghai University of Electric Power, Fred Hutchinson Cancer Center, University of Texas at Arlington
Abstract Preview: Purpose: Accurate prediction of patient response to radiotherapy plays a crucial role in monitoring disease progression and assessing treatment efficacy, enabling clinicians to develop personalized th...
Authors: Xiaolong Fu, Runping Hou, Md Tauhidul Islam, Lei Xing
Affiliation: Department of Radiation Oncology, Stanford University, Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine
Abstract Preview: Purpose: To introduce a novel schematic image representation of radiomics data, called OmicsMap, for high-performance deep radiomics analysis. OmicsMap transforms tabular radiomics data into an image ...
Authors: Beth Bradshaw Ghavidel, Benyamin Khajetash, Yang Lei, Meysam Tavakoli
Affiliation: Icahn School of Medicine at Mount Sinai, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Emory University, Department of Radiation Oncology, Emory University
Abstract Preview: Purpose: Pancreatic cancer is among the most aggressive types of cancer, with a five-year survival rate of approximately 10%. Recent studies show that radiomics and deep learning (DL)-based methods ar...
Authors: Hongyi Jiang, Fang-Fang Yin
Affiliation: Duke University, Medical Physics Graduate Program, Duke Kunshan University
Abstract Preview: Purpose:
Imaging moving tissues using PET-CT can be difficult. Separating signal into phases during construction reduces signal count and increases influence of noise. Algorithms that use signal fr...
Authors: Lei Xing, Zixia Zhou
Affiliation: Department of Radiation Oncology, Stanford University, Department of Radiation Oncology, Stanford University, Stanford
Abstract Preview: Purpose: Functional brain imaging techniques, such as functional magnetic resonance imaging (fMRI), generate high-dimensional, dynamic data reflecting complex neural processes. However, extracting rob...
Authors: Yabo Fu, Yang Lei, Yu Lei, Haibo Lin, Ruirui Liu, Tian Liu, Kenneth Rosenzweig, Charles B. Simone, Shouyi Wei, Jiahan Zhang
Affiliation: Icahn School of Medicine at Mount Sinai, University of Nebraska Medical Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York Proton Center
Abstract Preview: Purpose: Beam orientation optimization (BOO) in intensity-modulated radiation therapy (IMRT) is traditionally a complex, non-convex problem tackled with heuristic methods. This study benchmarks global...
Authors: Evan Calabrese, Hangjie Ji, Kyle J. Lafata, Casey Y. Lee, Eugene Vaios, Chunhao Wang, Lana Wang, Zhenyu Yang, Jingtong Zhao
Affiliation: Duke University, Department of Radiation Oncology, Duke University, Duke Kunshan University, North Carolina State University
Abstract Preview: Purpose: To develop a biologically guided deep learning (DL) model for predicting brain metastasis(BM) local control outcomes following stereotactic radiosurgery (SRS). By integrating pre-SRS MR image...
Authors: Sahaja Acharya, Matthew Ladra, Junghoon Lee, Lina Mekki
Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Department of Biomedical Engineering, Johns Hopkins University
Abstract Preview: Purpose: Multi-parametric MRI (mpMRI) is widely used for deep learning (DL)-based automatic segmentation of brain tumors. While multi-contrast images concatenated as channels are typically input to ne...
Authors: Sahaja Acharya, Matthew Ladra, Junghoon Lee, Lina Mekki, Bohua Wan
Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Department of Biomedical Engineering, Johns Hopkins University, Department of Computer Science, Johns Hopkins University
Abstract Preview: Purpose: Cerebellar mutism syndrome (CMS) is the most frequently observed complication in children undergoing surgical resection of posterior fossa tumors. Previous work explored lesion to symptom map...
Authors: Kimberly Chan, Anke Henning, Mahrshi Jani, Andrew Wright, Xinyu Zhang
Affiliation: Advanced Imaging Research Center (AIRC), UT Southwestern Medical Center
Abstract Preview: Purpose: To evaluate the performance of multiple deep learning architectures for MRSI reconstruction and determine their effectiveness in maintaining high-resolution metabolite mapping while reducing ...
Authors: Ji Hye Han, Yookyung Kim, Jang-Hoon Oh, Heesoon Sheen, Han-Back Shin
Affiliation: Ewha Womans university, Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, High-Energy Physics Center, Chung-Ang Universit, Ewha Womans University, Kyung Hee University Hospital
Abstract Preview: Purpose: Chest X-rays are critical for diagnosing conditions such as pneumonia, tuberculosis, and COVID-19. Although deep learning (DL) approaches, especially convolutional neural networks, have signi...
Authors: Fangfen Dong, Jiaming Li, Xiaobo Li, Weipei Wang, Zhixin Wang, Bing Wu, Benhua Xu, Yong Yang, Yifa Zhao
Affiliation: Department of Radiation Oncology, Fujian Medical University Union Hospital/Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors/Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematologi, Zhangpu County Hospital, School of Medical Imaging, Fujian Medical University
Abstract Preview: Purpose: To explore the construction and clinical application value of a deep learning-based positioning error prediction model, providing a reference for optimizing iSCOUT system-guided precision rad...
Authors: Zhaoyang Fan, Eric Nguyen, Dan Ruan, Jiayu Xiao
Affiliation: Department of Radiation Oncology, University of California, Los Angeles, Department of Radiology, University of Southern California, University of Southern California
Abstract Preview: Purpose: MR vessel wall imaging (VWI) has been shown to be effective for evaluating intracranial atherosclerosis disease. However, VWI typically also requires an MR angiography (MRA) in the same imagi...
Authors: Justus Adamson, Mu Chen, Ke Lu, Zhenyu Yang, Fang-Fang Yin, Rihui Zhang, Yaogong Zhang, Haipeng Zhao, Haiming Zhu, Yuchun Zhu
Affiliation: Shanghai Dacheng Medical Technology, Duke University, Medical Physics Graduate Program, Duke Kunshan University, Duke Kunshan University, The First People's Hospital of Kunshan
Abstract Preview: Purpose: In filtered back-projection (FBP) reconstruction, conventional filters often reduce noise at the expense of high-frequency details, leading to structural details loss. To address this limitat...
Authors: William F.B Igoniye, Belema Manuel, Christopher F. Njeh, O Ray-offor
Affiliation: Indiana University School of Medicine, Department of Radiation Oncology, Department of Radiology, University of Port Harcourt Teaching Hospital
Abstract Preview: Purpose: The accurate and efficient categorization of brain tumors is essential for effective treatment planning and improved patient outcomes. Current MRI-based diagnostic methods are time-intensive ...
Authors: Sang Hee Ahn, Nalee Kim, Do Hoon Lim
Affiliation: Samsung Medical Center, Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine
Abstract Preview: Purpose: MRI offers superior soft-tissue contrast, aiding tumor localization and segmentation in radiation therapy, which traditionally relies on oncologists' expertise. This study compares CNN-based ...
Authors: Xiaoyu Duan, Xiang Li, Wenbo Wan, Lei Zhang, Yiwen Zhang
Affiliation: Duke University, Medical Physics Graduate Program, Duke Kunshan University
Abstract Preview: Purpose: Breast screening has been proved to reduce breast cancer mortality by early detection and treatment for patients. Mammography is the most common and widely used technique for breast cancer sc...
Authors: Mustafa Bashir, Diana Kadi, Kyle J. Lafata, Jacob A. Macdonald, Mark Martin, Yuqi Wang, Marilyn Yamamoto
Affiliation: Duke University, Department of Radiation Oncology, Duke University, Department of Electrical and Computer Engineering, Duke University, Department of Radiology, Duke Unversity
Abstract Preview: Purpose: To develop a high-throughput, automated-data-interrogation pipeline for integrating imaging and clinical information to identify key determinants of liver volume (LV), enabling population-sca...
Authors: Lucy Jiang, Chengyu Shi
Affiliation: Department of Radiation Oncology, City of Hope Orange County, Amity Regional High School (10th Grade)
Abstract Preview: Purpose: Early-stage breast cancer is common among females, with typically high local tumor control rates (LCR). Brachytherapy is a common way to achieve LCR following surgery. However, the patients m...
Authors: Sean L. Berry, Weixing Cai, Laura I. Cervino, Yabo Fu, Daphna Gelblum, Wendy B. Harris, Xiuxiu He, Licheng Kuo, Tianfang Li, Xiang Li, Jean M. Moran, Boris Mueller, Huiqiao Xie, Mitchell Yu, Hao Zhang
Affiliation: Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center
Abstract Preview: Purpose: Gating ablative radiotherapy for pancreatic cancer accounts for tumor movement due to respiration and typically requires 5, 15, or 25 fractions. Pretreatment imaging verification is essential...
Authors: Yang Lei, Tian Liu, Ren-Dih Sheu, Meysam Tavakoli, Jing Wang, Kaida Yang, Jiahan Zhang
Affiliation: Icahn School of Medicine at Mount Sinai, Department of Radiation Oncology, Emory University
Abstract Preview: Purpose:
The study aimed to improve target and organ at risk (OAR) segmentation in low-dose-rate brachytherapy (LDR-BT) for prostate cancer treatment, by integrating clinical guidelines into deep l...
Authors: Hania A. Al-Hallaq, Xuxin Chen, Anees H. Dhabaan, Elahheh (Ella) Salari, Xiaofeng Yang
Affiliation: Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University
Abstract Preview: Purpose:
Radiomics image analysis could lead to the development of predictive signatures and personalized radiotherapy treatments. However, variations in delineation are known to affect hand-crafte...
Authors: Shinichiro Mori, Isabella Pfeiffer, Chester R. Ramsey, Alexander Usynin
Affiliation: Thompson Proton Center, National Institutes for Quantum Science and Technology, Thompson Cancer Survival Center
Abstract Preview: Purpose: Four-dimensional CT imaging (4DCT) has become a standard tool for managing respiratory motion in radiation therapy. However, many treatment delivery systems and most diagnostic CT scanners la...
Authors: Weixing Cai, Laura I. Cervino, Yabo Fu, Xiuxiu He, Tianfang Li, Xiang Li, Hao Zhang
Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center
Abstract Preview: Purpose:
This work aims to develop an innovative technique to evaluate patients’ daily respiratory pattern using three-dimensional (3D) deformation vector fields (DVF) derived from a free-breathing...
Authors: Louis Archambault, Nicolas Drouin, Alexis Horik, Simon Thibault
Affiliation: Département de Physique, de Génie Physique et D'optique, et Centre de Recherche sur le Cancer, Université Laval, Département de Physique, de Génie Physique et D'optique, et Centre d'optique, photonique et laser, Université Laval
Abstract Preview: Purpose: To develop a novel type of real-time 3D dosimeter for the quality assurance of linear accelerators used in external beam radiotherapy.
Methods: An experimental setup was constructed using ...
Authors: Ming Chao, Karyn A Goodman, Yang Lei, Tian Liu, Jing Wang, Jiahan Zhang
Affiliation: Icahn School of Medicine at Mount Sinai
Abstract Preview: Purpose: Real-time volumetric MRI is essential for motion management in MRI-guided radiotherapy (MRIgRT), yet acquiring high-quality 3D images remains challenging due to time constraints and motion ar...
Authors: Pouya Azarbar, Nima Kasraie, Mahsa Shahrbabki Mofrad, Peyman Sheikhzadeh
Affiliation: UT Southwestern Medical Center, Shahid Beheshti University of Medical science, Imam Khomeini Hospital Complex,Tehran University of Medical Sciences, Tehran University of Medical Science
Abstract Preview: Purpose: PET imaging become crucial in diagnosing and managing various diseases, but its key limitation is the lack of detailed anatomical information. Integrating CT-scans with PET images enhances cl...
Authors: Pouya Azarbar, Nima Kasraie, Peyman Sheikhzadeh
Affiliation: UT Southwestern Medical Center, Shahid Beheshti University of Medical science, Imam Khomeini Hospital Complex,Tehran University of Medical Sciences
Abstract Preview: Purpose: Positron Emission Tomography (PET) is crucial for diagnosing and monitoring diseases due to its functional imaging capabilities. However, its high cost, significant radiation exposure, and li...
Authors: Ross I. Berbeco, Vera Birrer, Raphael Bruegger, Pablo Corral Arroyo, Roshanak Etemadpour, Dianne M. Ferguson, Rony Fueglistaller, Thomas C. Harris, Yue-Houng Hu, Matthew W. Jacobson, Mathias Lehmann, Nicholas Lowther, Daniel Morf, Marios Myronakis
Affiliation: Brigham and Women's Hospital, Harvard Medial School, Dana-Farber Cancer Institute, Department of Radiation Oncology, Dana Farber/Brigham and Women's Cancer Center, Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Brigham and Womens Hospital, Dana Farber Cancer Institute, Harvard Medical School, Brigham and Women's Hospital, Varian Imaging Laboratory, Dana-Farber Cancer Institute
Abstract Preview: Purpose: Applications of combined kV-MV CBCT include metal artifact correction and material identification. Difficulties arise, however, when the imagers have misaligned geometric perspectives of the ...
Authors: Enhui Chang, Yunfei Dong, Yifei Hao, Chengliang Jin, Shengsheng Lai, Yi Long, Mengni Wu, Yulu Wu, Ruimeng Yang, Zhenyu Yang, Yue Yuan, Lei Zhang, Wanli Zhang, Yaogong Zhang
Affiliation: Duke Kunshan University, Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Medical Physics Graduate Program, Duke Kunshan University
Abstract Preview: Purpose: Macrotrabecular-Massive Hepatocellular Carcinoma (MTM-HCC) is one type of liver cancer showed minimum image signature for accurate non-invasive diagnosis. This study aims to develop and evalu...
Authors: Wilfred R Furtado, Gary Y. Ge, James Lee, Jie Zhang
Affiliation: University of Kentucky
Abstract Preview: Purpose: Despite advancements in Artificial Intelligence (AI) and its growing role in clinical practices like radiology, formal AI education remains limited in medical training. This gap contributes t...
Authors: Yu Gao, Lei Xing, Siqi Ye
Affiliation: Department of Radiation Oncology, Stanford University
Abstract Preview: Purpose:
Limited-angle CBCT (LA-CBCT) scans are often the only option for non-coplanar radiation therapy to prevent potential mechanical collisions. However, the consecutive angular occlusion of pr...
Authors: Renee Farrell, Jinkoo Kim, Xin Qian, Ziyu Shu, Zhaozheng Yin, Tiezhi Zhang
Affiliation: Stony Brook Medicine, Washington University in St. Louis, Stony Brook University, Stony Brook University Hospital
Abstract Preview: Purpose: Ultra-short CT scan allows fast imaging speed, dose reduction, and compact system design. We developed a deep image prior (DIP) based reconstruction method named Hybrid Prior-Enhanced Deep Im...
Authors: Kofi M. Deh, Tamas Jozsa, Tsang-Wei Tu
Affiliation: Cranfield University, Howard University Hospital, Howard University
Abstract Preview: Purpose: To enhance the quality of hyperpolarized (HP) 13C magnetic resonance images by integrating deep learning with perfusion modeling.
Methods: A convolutional neural network (CNN) and a superr...
Authors: John Ginn, Chenlu Qin, Deshan Yang
Affiliation: Duke University, Department of Radiation Oncology, Duke University
Abstract Preview: Purpose: Clinical implementation of auto-segmentation tools has been hindered by poor interpretability and generalizability of AI models, necessitating the development of automated contour quality ass...
Authors: Ibtisam Almajnooni, Elisabeth Weiss, Lulin Yuan
Affiliation: Virginia Commonwealth University
Abstract Preview: Purpose: We developed a deep learning neural network (DLNN) to predict the risk of radiation-induced esophagitis (RE) during lung cancer radiation therapy based on the spatial dose distribution, for t...
Authors: Minbin Chen, Xiaoyi Dai, Xiaoyu Duan, Chunhao Wang, Fan Xia, Zhenyu Yang, Fang-Fang Yin, Chulong Zhang, Rihui Zhang
Affiliation: Duke University, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University, The First People's Hospital of Kunshan
Abstract Preview: Purpose: Deep learning (DL)-based mammography diagnosis presents unique challenges, as accurate interpretation requires both global breast condition analysis and local lesion structural information. E...
Authors: Evan Calabrese, Scott R. Floyd, Kyle J. Lafata, Zachary J. Reitman, Eugene Vaios, Chunhao Wang, Lana Wang, Deshan Yang, Zhenyu Yang, Jingtong Zhao
Affiliation: Duke University, Department of Radiation Oncology, Duke University, Duke Kunshan University
Abstract Preview: Purpose:
This study proposes a novel neural ordinary differential equation (NODE) framework to distinguish post-SRS radionecrosis from recurrence in brain metastases (BMs). By integrating imaging f...
Authors: Seungryong Cho, Donghyeok Choi, Joonil Hwang, Byung-Hee Kang, Jin Sung Kim, Eungman Lee, Younghee Park
Affiliation: Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, KAIST, Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Ewha Womans University of Medicine
Abstract Preview: Purpose: Radiation therapy (RT) is critical for cancer treatment, but changes in tumor size and shape during therapy challenge precise dose delivery. Adaptive radiation therapy (ART) addresses these v...
Authors: Ryan Alden, Tithi Biswas, Kaushik Halder, Felix Maria-Joseph, Michael Mix, Rihan Podder, Tarun Kanti Podder
Affiliation: SUNY Upstate Medical University, IIT-Roorkee, University of Florida
Abstract Preview: Purpose: Early-stage NSCLC patients undergoing SBRT often die due to intercurrent illnesses. However, prediction of overall survival (OS) remains crucial due to the risk of disease recurrence. This st...
Authors: Ali Ajdari, Thomas R. Bortfeld, Christopher Bridge, Gregory Buti, Marcela Giovenco, Fredrik Lofman, Gregory C. Sharp, Helen A Shih, Tugba Yilmaz
Affiliation: Massachusetts General Hospital, RaySearch Laboratories, Department Of Radiation Oncology, Massachusetts General Hospital (MGH), Massachusetts General Hospital & Harvard Medical School, Massachusetts General Hospital and Harvard Medical School
Abstract Preview: Purpose: Defining radiation target volumes with accurate integration of the neuroanatomy is one of the major difficulties in designing glioma treatments. We developed a deep learning network for norma...
Authors: Akihiro Haga, Ren Iwasaki, Kenya Kusunose, Makoto Miyake, Kenji Moriuchi, Yasuharu Takeda, Hidekazu Tanaka, Hirotsugu Yamada
Affiliation: Department of Cardiovascular Medicine, Nephrology, and Neurology Graduate School of Medicine, University of the Ryukyus, Graduate School of Biomedical Sciences, Tokushima University, Tokushima university, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Department of Cardiology, Tenri Hospital, Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Division of Heart Failure, Department of Heart Failure and Transplant, National Cerebral and Cardiovascular Center
Abstract Preview: Purpose: Device dependency is a significant challenge in medical AI, potentially limiting generalization performance. This study aimed to develop a robust deep learning model for predicting left ventr...
Authors: Yufeng Cao, Luigi Marchionni, William Silva Mendes, Cem Onal, Lei Ren, Amit Sawant, Nicole L Simone, Philip Sutera, Phuoc Tran
Affiliation: University of Maryland School of Medicine, 9Department of Radiation Oncology, Thomas Jefferson University, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, University of Maryland, Baltimore, Baskent University Faculty of Medicine, Department of Radiation Oncology, Department of Radiation Oncology, University of Maryland School of Medicine, Maryland University Baltimore, 8Department of Pathology and Laboratory Medicine, Weill Cornell Medicine
Abstract Preview: Purpose: This study aims to predict 2-yr Metastasis-free survival (MFS) for oligometastatic castration-sensitive prostate cancer (omCSPC) patients treated by metastasis-directed therapy (MDT) by devel...
Authors: Liyuan Chen, Meixu Chen, Bowen Jing, Sepeadeh Radpour, Erich Josef Schmitz, David Sher, Jing Wang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center
Abstract Preview: Purpose: Prospective clinical trials have shown that involved nodal radiation therapy (INRT) can substantially improve patients’ quality of life without increasing the risk of elective nodal failure. ...
Authors: Ziqi Gao, Lei Xing, Siqi Ye, S. Kevin Zhou
Affiliation: Department of Radiation Oncology, Stanford University, University of Science and Technology of China (USTC)
Abstract Preview: Purpose: To address the challenge of high memory usage in volumetric cone-beam CT (CBCT) imaging, we propose a method that combines joint reconstruction and super-resolution for sparsely sampled CBCT ...
Authors: Karyn A Goodman, Yang Lei, Tian Liu, D. Michael Lovelock, Charlotte Elizabeth Read, Jing Wang, Jiahan Zhang
Affiliation: Icahn School of Medicine at Mount Sinai
Abstract Preview: Purpose: Real-time volumetric MRI is essential for precise motion management in MRI-guided radiotherapy (MRIgRT). While 2D Cine MRI offers high temporal resolution for motion tracking, it inherently l...
Authors: Yunfei Dong, Dongyang Guo, Jiongli Pan, Tao Peng, Caiyin Tang, Zhenyu Yang, Fang-Fang Yin, Lei Zhang, Tianyi Zhang, Yaogong Zhang
Affiliation: Duke Kunshan University, Department of Radiology, Taizhou People’s Hospital Affiliated to Nanjing Medical University, School of Future Science and Engineering, Soochow University, Medical Physics Graduate Program, Duke Kunshan University
Abstract Preview: Purpose: This study aims to improve the accuracy of CT-based diagnosis of thyroid cancer by developing a hybrid model that integrates Convolutional Neural Networks (CNNs) with Long Short-Term Memory (...
Authors: Steve B. Jiang, Mu-Han Lin, Yu-Chen Lin, Austen Matthew Maniscalco, Dan Nguyen, David Sher, Xinran Zhong
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, UT Southwestern Medical Center, UT Dallas
Abstract Preview: Purpose:
Sequential boost radiotherapy (RT) poses a challenge in allocating dose across multiple plans while protecting organs at risk (OARs). Clinicians must decide whether OAR sparing should occu...
Authors: Gregory Bolard, Rabten Datsang, Sarah Ghandour, Timo Kiljunen, Pauliina Paavilainen, Sami Suilamo, Katlin Tiigi
Affiliation: Turku University Hospital, Virginia Commonwealth University, MVision AI, North Estonia Medical Centre, Docrates Cancer Center, Hopital Riviera-Chablais
Abstract Preview: Purpose: To verify the performance of a vendor-neutral deep learning model for synthetic CT generation from T2-weighted and balanced steady-state MR sequences to support both MR-only simulation and MR...
Authors: Daniel O Connor, Mary Feng, Hui Lin, Hengjie Liu, Xin Miao, Michael Ohliger, Jess E. Scholey, Ke Sheng, DI Xu, Wensha Yang, Yang Yang
Affiliation: UCSF, University of California, Los Angeles, Department of Radiation Oncology, University of California San Francisco, Department of Radiation Oncology, University of California, San Francisco, Department of Radiation Oncology, University of California at San Francisco, University of San Francisco, Department of Radiology, University of California, San Francisco, University of California San Francisco, Siemens Medical Solutions USA Inc.
Abstract Preview: Purpose: The scanning time for a fully sampled MRI is lengthy. Compressed sensing (CS) has been developed to minimize image artifacts in accelerated scans, but the required iterative reconstruction is...
Authors: Mavlonbek Khomidov, Jong-Ha Lee
Affiliation: Department of Biomedical Engineering, Keimyung University, Department of Computer Engineering, Keimyung University
Abstract Preview: Purpose: In this research, we aim to estimate blood pressure using remote photoplethysmography (rPPG) signal extracted from facial video. This method provides non-invasive and contactless, continuous ...
Authors: Manju Liu, Ning Wen, Fuhua Yan, Yanzhao Yang, Zhenyu Yang, Haoran Zhang, Lei Zhang, Yajiao Zhang
Affiliation: Department of Radiology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University
Abstract Preview: Purpose: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy where precise segmentation of tumors and adjacent vessels is crucial for effective treatment planning. This study dev...
Authors: Hao Chen, Kai Ding, Xiaoyu Hu, Xun Jia, Heng Li, Devin Miles
Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Johns Hopkins University
Abstract Preview: Purpose: Accurately delivering radiation dose is critical in intensity-modulated proton therapy (IMPT), where intrafraction motion management plays a pivotal role. Our proton therapy system equipped x...
Authors: Ricardo Garcia Santiago, Narges Miri, Daryl P. Nazareth, Ankit Pant, Mukund Seshadri
Affiliation: Roswell Park Comprehensive Cancer Center
Abstract Preview: Purpose: To develop a transformer-based deep learning network framework for predicting VMAT dose distributions. This can provide fast and efficient calculations with accuracies potentially comparable ...
Authors: Osama R. Mawlawi, Yiran Sun
Affiliation: RICE University, UT MD Anderson Cancer Center
Abstract Preview: Purpose: Conventional PET reconstruction methods often produce noisy images with artifacts due to data/model mismatches and inconsistencies. Recently, deep learning-based conditional denoising diffusi...
Authors: Brian M. Anderson, Shiva K. Das, Meagan Foster, Anirudh Karunaker, Lawrence B. Marks, Lukasz Mazur, Michael Repka
Affiliation: UNC Chapel HIll, University of North Carolina at Chapel Hill, UNC School of Medicine, University of North Carolina
Abstract Preview: Purpose: Development of a peer review segmentation check system to identify deviations in physician contours of standard risk pelvic lymph nodes in patients receiving radiation therapy for prostate an...
Authors: Steve B. Jiang, Austen Matthew Maniscalco, Dan Nguyen, Chenyang Shen, Jiacheng Xie, Shunyu Yan, Ying Zhang, You Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, The University of Texas at Dallas
Abstract Preview: Purpose: Although treatment planning systems (TPSs) can handle dose calculation and plan optimization automatically, planning for radiotherapy still requires extensive efforts and expertise from a mul...
Authors: Yankui Chang, Shijun Li, Xi Pei, Ripeng Wang, Xuanhe Wang, X. George Xu, Qing Zhang, Jingfang Zhao
Affiliation: University of Science and Technology of China, Shanghai proton and heavy ion center, School of Nuclear Science and Technology, University of Science and Technology of China, Anhui Wisdom Technology Co., Ltd.
Abstract Preview: Purpose:
This paper describes disruptive methods using both GPU-based MC simulation and deep-learning (DL)-based MC denoising algorithms, as well as clinical tests involving more than 560 patient p...
Authors: Tommaso Frigerio, Joshua Genender, John M. Hoffman, Catherine (Caffi) Meyer
Affiliation: UCLA, David Geffen School of Medicine at UCLA
Abstract Preview: Purpose: Accurate bone marrow segmentation is required for bone marrow dosimetry to monitor for dangers in PSMA-Lu177 radioligand therapy. We introduce a hybrid (AI/semantic knowledge) segmentation pi...
Authors: Matthew Brown, Yushi Chang, Jinhyuk Choi, William Silva Mendes, Lei Ren, Aman Sangal, William Paul Segars, Phuoc Tran, Hualiang Zhong
Affiliation: University of Maryland School of Medicine, Department of Radiation Oncology, University of Maryland School of Medicine, Carl E. Ravin Advanced Imaging Laboratories and Center for Virtual Imaging Trials, Duke University Medical Center, Department of Radiation Oncology, Medical College of Wisconsin
Abstract Preview: Purpose: Digital phantoms like XCAT are essential for imaging and treatment optimization in radiology and radiation oncology. However, the lack of realistic textures (HU distribution) in XCAT limits i...
Authors: Hua-Chieh Shao, Shanshan Tang, Jing Wang, Kai Wang, You Zhang
Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, Department of Radiation Oncology, University of Maryland Medical Center
Abstract Preview: Purpose: Artifacts caused by gas bubble movement in the gastrointestinal tract can severely degrade the image quality of on-board abdominal cone-beam computed tomography (CBCT), impacting its utility ...
Authors: Hoyeon Lee
Affiliation: University of Hong Kong
Abstract Preview: Purpose: Deep-learning approaches are widely investigated for Cone-Beam CT (CBCT) scatter correction to improve the quality of the linear-accelerator mounted CBCT. This study aims to optimize the deep...
Authors: Guangjun Li, Ying Song, Huanan Tang, Tianxiong Wu, Qiuyi Ye, Wei Zhang
Affiliation: West China Second Hospital of Sichuan University, United Imaging Healthcare, West China Hospital of Sichuan University
Abstract Preview: Purpose:
To propose a general low-dose reconstruction model for ultra-sparse-view cone-beam CT (CBCT) and evaluate its clinical application in improving image quality and reducing radiation dose fo...