Search Submissions πŸ”Ž

Results for "enhanced t2w": 19 found

18F-FDG PET/CT-Based Deep Radiomic Models for Enhancing Chemotherapy Response Prediction in Breast Cancer

Authors: Ke Colin Huang, Zirui Jiang, Joshua Low, Christopher F. Njeh, Oluwaseyi Oderinde, Yong Yue

Affiliation: Purdue University, Indiana University School of Medicine, Department of Radiation Oncology

Abstract Preview: Purpose: Enhancing the accuracy of tumor response predictions enables the development of tailored therapeutic strategies for patients with breast cancer (BCa). In this study, we developed deep-radiomi...

3D Topological Features for Outcome Assessment of Therapeutic Responses to Neoadjuvant Chemoradiotherapy (NCRT) with and without Anti-CD40 Immunotherapy in Local Advanced Rectal Cancer (LARC)

Authors: Todd A Aguilera, Gaurav Khatri, Jiaqi Liu, Hao Peng, Nina N. Sanford, Robert Timmerman, Haozhao Zhang

Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, UT southwestern medical center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
This study first integrates 3D topological data analysis with radiomics from local advanced rectal cancer T2-weighted MRI to evaluate therapeutic responses and quantify treatment-induced c...

A Vision-Language Deep Learning Model for Predicting Survival Outcomes in Glioblastoma Patients

Authors: Zachary Buchwald, Chih-Wei Chang, Richard L.J. Qiu, Mojtaba Safari, Hui-Kuo Shu, Lisa Sudmeier, Xiaofeng Yang, David Yu, Xiaohan Yuan

Affiliation: Emory University and Winship Cancer Institute, Emory University, Georgia Institute of Technology, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: This study proposes a novel vision-language model (VLM) to predict survival outcomes in glioblastoma (GBM) patients. By integrating multimodal MRI data and clinical information, the proposed ...

A Vision-Language Model for T1-Contrast Enhanced MRI Generation for Glioma Patients

Authors: Zachary Buchwald, Zach Eidex, Richard L.J. Qiu, Justin R. Roper, Mojtaba Safari, Hui-Kuo Shu, Xiaofeng Yang, David Yu

Affiliation: Emory University and Winship Cancer Institute, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Gadolinium-based contrast agents (GBCA) are commonly used for patients with gliomas to delineate and characterize the brain tumors using T1-weighted (T1W) MRI. However, there is a rising conc...

AI-Based Registration-Free 3T T2-Weighted MRI Synthesis Using Truefisp MRI Acquired on a 0.35T MR-Linac System

Authors: Hilary P Bagshaw, Mark K Buyyounouski, Cynthia Fu-Yu Chuang, Yu Gao, Dimitre Hristov, Lianli Liu, Lawrie Skinner, Lei Xing

Affiliation: Department of Radiation Oncology, Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose:
MR-guided radiation therapy has introduced a significant leap in cancer treatment by allowing adaptive treatment. The low-field MR-guided system predominantly uses the TrueFISP sequence, w...

AI-Driven Drug Discovery through an Interactive Analysis of Radiomics and Biological Insights in Glioblastoma

Authors: Nobuki Imano, Yuzuha Kadooka, Daisuke Kawahara, Misato Kishi, Yuji Murakami, Shumpei Onishi

Affiliation: Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima University, Department of Neurosurgery, Hiroshima University Hospital

Abstract Preview: Purpose: Radiomics has proven useful in predicting overall survival in glioblastoma (GBM) patients, but consistent molecular correlations remain unidentified, leaving its biological basis unclear. Thi...

Addressing Missing MRI Sequences: A DL-Based Region-Focused Multi-Sequence Framework for Synthetic Image Generation

Authors: Amir Abdollahi, Oliver JΓ€kel, Maxmillian Knoll, Rakshana Murugan, Adithya Raman, Patrick Salome

Affiliation: UKHD & DKFZ, Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), German Cancer Research Centre(DKFZ), DKFZ, MGH

Abstract Preview: Purpose:
Missing MRI sequences, due to technical issues in data handling or clinical constraints like contrast agent intolerance, limit the use of medical imaging datasets in computational analysis...

BEST IN PHYSICS MULTI-DISCIPLINARY: Building a Cross-Modality Model to Integrate Bio-Clinical Features, Anatomical MRI, and White-Matter Pathlength Mapping for Personalized Glioblastoma RT Planning

Authors: Steve Braunstein, Angela Jakary, Hui Lin, Bo Liu, Janine Lupo, Tiffany Ngan, Ke Sheng, Nate Tran

Affiliation: Radiation Oncology, University of California San Francisco, Graduate Program in Bioengineering, University of California San Francisco-UC Berkeley, Department of Radiation Oncology, University of California San Francisco, Department of Radiology and Biomedical Imaging, University of California San Francisco, Department of Radiation Oncology, University of California, San Francisco

Abstract Preview: Purpose: Current RT clinical target volumes (CTVs) for Glioblastoma (GBM) employ 2cm isotropic expansions of gross tumor volumes. However, studies showed patients still experience progression beyond t...

Brain Tumor Segmentation from Multi-Parametric MRI with Integrated Evidential Uncertainty Estimation

Authors: Sahaja Acharya, Matthew Ladra, Junghoon Lee, Lina Mekki

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Department of Biomedical Engineering, Johns Hopkins University

Abstract Preview: Purpose: Multi-parametric MRI (mpMRI) is widely used for deep learning (DL)-based automatic segmentation of brain tumors. While multi-contrast images concatenated as channels are typically input to ne...

Cerebellar Mutism Syndrome Prediction with 3D Residual Convolutional Neural Network

Authors: Sahaja Acharya, Matthew Ladra, Junghoon Lee, Lina Mekki, Bohua Wan

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Department of Biomedical Engineering, Johns Hopkins University, Department of Computer Science, Johns Hopkins University

Abstract Preview: Purpose: Cerebellar mutism syndrome (CMS) is the most frequently observed complication in children undergoing surgical resection of posterior fossa tumors. Previous work explored lesion to symptom map...

Enhancing T2-Weighted Brain MRI Resolution across Orientations Using AI-Based Volumetric Reconstruction

Authors: Mengqi Shen, Meghna Trivedi, Tony J.C. Wang, Andy (Yuanguang) Xu, Yading Yuan

Affiliation: Columbia University Medical Center, Dept of Med Hematology & Oncology, Data Science Institute at Columbia University, Columbia University Irving Medical Center, Department of Radiation Oncology, Columbia University Irving Medical Center

Abstract Preview: Purpose: T2-weighted (T2w) images are critical for identifying pathological changes due to their superior contrast in differentiating tissue types. However, they often lack detailed anatomical resolut...

Enhancing Urethral Visualization for Prostate SBRT Using Post-Void T2-Weighted Imaging on a Low-Field 0.35T MR-Linac System

Authors: Nebi Demez, Michael Kasper, Noufal Manthala Padannayil, Shyam Pokharel, Suresh Rana, Lauren A. Rigsby, Tino Romaguera, Nishan Shrestha, Somol Sunny

Affiliation: Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida

Abstract Preview: Purpose: Accurate delineation of the urethra is critical for optimizing tumor control and minimizing urethral toxicity in prostate stereotactic body radiation therapy (SBRT). The purpose of this study...

Generalizable 7T T1 Map Synthesis from 1.5T and 3T T1W MRI for High-Resolution MRI-Guided Radiation Therapy

Authors: Zachary Buchwald, Chih-Wei Chang, Zach Eidex, Hui Mao, Richard L.J. Qiu, Justin R. Roper, Mojtaba Safari, Hui-Kuo Shu, Xiaofeng Yang, David Yu

Affiliation: Emory University and Winship Cancer Institute, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University, Emory University School of Medicine

Abstract Preview: Purpose: MRI-guided radiation therapy (MRgRT) benefits significantly from enhanced soft-tissue contrast and spatial resolution, which aid in accurately delineating tumors and organs at risk. Although ...

Impact of Feraheme on Imaging and Thermal Dynamics during MR-Guided Focused Ultrasound: Phantom Study

Authors: Jaydev K. Dave, Krzysztof R Gorny, Chunming Gu, Nicholas J. Hangiandreou, Gina K. Hesley, Myung-Ho In, Zaiyang Long, Aiming Lu, Christin A. TiegsHeiden

Affiliation: Mayo Clinic

Abstract Preview: Purpose:
MR-guided focused ultrasound (MRgFUS) enables precise tumor ablation with real-time MR-thermometry guidance. Our practice is exploring the potential use of Feraheme (Ferumoxytol), a superp...

Patient-Specific Imaging Modality Agnostic Virtual Digital Twins Modeling Temporally Varying Digestive Motion

Authors: James M. Balter, Lando S. Bosma, Jorge Tapias Gomez, Nishant Nadkarni, Mert R Sanbuncu, William Paul Segars, Ergys D. Subashi, Neelam Tyagi, Harini Veeraraghavan

Affiliation: University of Michigan, The University of Texas MD Anderson Cancer Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Carl E. Ravin Advanced Imaging Laboratories and Center for Virtual Imaging Trials, Duke University Medical Center, Cornell University, University Medical Center Utrecht, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Develop patient-specific virtual digital twin (VDT) cohorts modeling physically realistic spatio-temporal gastrointestinal (GI) organs (stomach and duodenum) digestive motion.
Methods: Pat...

Predicting Pathological Complete Response to Neoadjuvant Chemotherapy for Breast Cancer at Early Time Points Using a Two-Stage Dual-Task Deep Learning Strategy

Authors: Bowen Jing, Jing Wang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Medical images acquired at multiple time points during neoadjuvant chemotherapy allow physicians to assess patients’ responses and personalize treatment plans accordingly. Studies from the I-...

Repeatability of Quantitative 3D T1ρ Imaging in Head and Neck Cancer

Authors: Sandeep Panwar Jogi, Nancy Lee, Ricardo Otazo, Ramesh Paudyal, Qi Peng, Akash Shah, Amita Shukla-Dave, Can Wu

Affiliation: Department of Radiology, Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center

Abstract Preview: Purpose: Quantitative T1ρ imaging provides enhanced tissue characterization beyond standard T1 and T2 parameters, potentially supporting early-stage longitudinal monitoring of head and neck cancer. Th...

Standardized MRI-CT Hybrid Workflow for High-Dose-Rate Image-Guided Adaptive Brachytherapy in Cervical Cancer: Aapm TG-303 Implementation

Authors: Kim Creach, Kim Howard, Julius G. Ojwang, Richard A. Shaw, Neelu Soni

Affiliation: Mercy Hospital Springfield

Abstract Preview: Purpose: To present a standardized MRI-CT hybrid workflow for High-Dose-Rate (HDR) Image-Guided Adaptive Brachytherapy (IGBT) in cervical cancer, aligned with AAPM TG-303, as a model to assist with im...

Towards Penile Small Vessel Imaging with Ferumoxytol-Enhanced MRI

Authors: Darren Fang, Amar Kishan, Justin McWilliams, Dan Ruan, Xiaodong Zhong

Affiliation: Department of Radiation Oncology, University of California, Los Angeles, Department of Radiology, University of California, Los Angeles, Department of Radiological Sciences, University of California, Los Angeles

Abstract Preview: Purpose: Prostate radiotherapy can malform penile vasculature, contributing to erectile dysfunction and compromising quality of life. To detect, quantify, and preferably avoid such occurrences, this p...