Authors: Hao Peng, Yajun Yu
Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center
Abstract Preview: Purpose: Personalized ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) is a novel ablative radiation dosing scheme developed by our institution. This study aims to establish a regression...
Authors: Christos Ilioudis, Marios Myronakis, Sotirios Raptis, Kyriaki Theodorou
Affiliation: Medical Physics Department, Medical School, University of Thessaly, Department of Information and Electronic Engineering, International Hellenic University (IHU)
Abstract Preview: Purpose: This study presents a radiomics-driven, machine learning framework developed to predict the possibility of Radiation Pneumonitis (RP), as a side effect of radiation therapy in lung cancer pat...
Authors: Katelyn M. Atkins, Indrin J. Chetty, Elizabeth M. McKenzie, Taman Upadhaya, Samuel C. Zhang
Affiliation: Department of Radiation Oncology,Cedars-Sinai Medical Center, Cedars-Sinai Medical Center
Abstract Preview: Purpose:
We explored a multi-regional and multi-omics approach to extract CT-based radiomics and 3D dosiomics features to predict radiation pneumonitis (RP) in patients with locally advanced Non-Sm...
Authors: Xiaoying Pan, X. Sharon Qi
Affiliation: Department of Radiation Oncology, University of California, Los Angeles, School of Computer Science and technology,Xi'an University of Posts and Telecommunications
Abstract Preview: Purpose:
Survival prediction for cancer presents a substantial hurdle in personalized oncology, due to intricate, high-dimensional medical data. Our study introduces an innovative feature selection...
Authors: Yongrui Bai, Xuming Chen, Yong Liu, Xiumei Ma
Affiliation: Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Abstract Preview: Purpose: Hematologic toxicity (HT) is a common complication in patients with cervical or endometrial cancer. This study aims to develop a precise predictive model for acute HT in patients with cervica...
Authors: Xiaolong Fu, Runping Hou, Md Tauhidul Islam, Lei Xing
Affiliation: Department of Radiation Oncology, Stanford University, Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine
Abstract Preview: Purpose: To introduce a novel schematic image representation of radiomics data, called OmicsMap, for high-performance deep radiomics analysis. OmicsMap transforms tabular radiomics data into an image ...
Authors: Emily Hansen, Tyler Kaulfers, Alois M. Ndlovu, Francia Romero, Niara Rowe, Roland Teboh
Affiliation: Montefiore Einstein University Hospital, Hackensack University Medical Center
Abstract Preview: Purpose: Daily use and reliance on the auto registration feature requires a performance check. Clinical application of auto registration is performed without a selected region of interest (ROI), requi...
Authors: Mehdi Amini, Minerva Becker, Simina Chiriac, Alexandre Cusin, Dimitrios Daskalou, Ghasem Hajianfar, Sophie Neveu, Marcella Pucci, Yazdan Salimi, Pascal Senn, Habib Zaidi
Affiliation: Geneva University Hospital, Division of Radiology, Diagnostic Department, Geneva University Hospitals, Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals
Abstract Preview: Purpose: Personalized prediction of vestibular schwannoma (VS) tumour growth is crucial for guiding patient management decisions toward observation versus intervention. This study proposes an automate...
Authors: Jiayi Du, Lihua Jin, Ke Sheng, Yu Zhou
Affiliation: Harvard University, University of California, San Francisco, UCLA, Department of Radiation Oncology, University of California, San Francisco
Abstract Preview: Purpose: Radiomics enables powerful insights into tumor biology through non-invasive imaging, excelling in diagnostic and prognostic predictions. However, due to a lack of mechanistic connections, que...
Authors: Jee Suk Chang, Hojin Kim, Jin Sung Kim, Jaehyun Seok
Affiliation: Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Department of Integrative Medicine
Abstract Preview: Purpose: This study aims to leverage 3D dose distribution data to develop a machine learning model capable of accurately predicting lymphedema occurrence in patients undergoing 3D conformal radiation ...
Authors: Eric N Carver, Julia Marks
Affiliation: Brown University
Abstract Preview: Purpose: The clinical applicability of radiomic features is hindered by challenges in stability and reproducibility. To address this, researchers are establishing image and feature standardizations an...
Authors: Hao Peng, Yajun Yu
Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center
Abstract Preview: Purpose: Personalized ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) is a new treatment paradigm pioneered by our institution. But the early decision-making process in PULSAR is challe...
Authors: Fangfen Dong, Jiaming Li, Xiaobo Li, Weipei Wang, Zhixin Wang, Bing Wu, Benhua Xu, Yong Yang, Yifa Zhao
Affiliation: Department of Radiation Oncology, Fujian Medical University Union Hospital/Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors/Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematologi, Zhangpu County Hospital, School of Medical Imaging, Fujian Medical University
Abstract Preview: Purpose: To explore the construction and clinical application value of a deep learning-based positioning error prediction model, providing a reference for optimizing iSCOUT system-guided precision rad...
Authors: Lian Duan, Stephen F. Kry, Hunter S. Mehrens, Christine Peterson, Paige A. Taylor
Affiliation: The University of Texas MD Anderson Cancer Center, UT MD Anderson Cancer Center
Abstract Preview: Purpose: To develop predictive models for IROC SRS head phantom audits and to identify important factors influencing institutional performance.
Methods: The IROC SRS head phantom includes two TLDs ...
Authors: James Brugarolas, Meixu Chen, Raquibul Hannan, Payal Kapur, Jing Wang, Kai Wang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, University of Maryland Medical Center
Abstract Preview: Purpose: Accurate prognosis of clear cell renal cell carcinoma (ccRCC) is essential for guiding personalized treatment planning. In this study, we present a multi-modal ensemble model (MMEM) that inte...
Authors: Ling Chen, Alexei V. Trofimov, Yi Wang, Dufan Wu
Affiliation: Massachusetts General Hospital, MGH
Abstract Preview: Purpose:
Selecting gaze angles of the eye is an important part of set-up of proton therapy for ocular tumors, ensuring that the treatment beam could irradiate the tumor while maximally sparing impo...
Authors: Michael Dohopolski, Jiaqi Liu, Hao Peng, Robert Timmerman, Zabi Wardak, Haozhao Zhang
Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center
Abstract Preview: Purpose:
This study introduces a gradient-based radiomics framework to enhance outcome prediction in Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy (PULSAR) for brain metastases...
Authors: Daria Gaykalova, Ranee Mehra, Jason K Molitoris, Hajar Moradmand, Lei Ren, Amit Sawant, Phuoc Tran
Affiliation: University of Maryland School of Medicine, Maryland University Baltimore, University of Maryland, Department of Radiation Oncology, University of Maryland School of Medicine
Abstract Preview: Purpose: Radiomics extracts quantitative imaging biomarkers from medical images. However, maintaining the reproducibility and stability of selected features across institutions and parameter settings ...
Authors: John M. Boone, Andrew M. Hernandez, Paul E. Kinahan, Michael F. McNitt-Gray, Jeffrey H. Siewerdsen, Ali Uneri
Affiliation: University of California, Johns Hopkins Univ, UT MD Anderson Cancer Center, David Geffen School of Medicine at UCLA, University of Washington, UC Davis Health
Abstract Preview: Purpose: Measuring image quality (IQ) in large clinical databases, such as the Medical Imaging and Data Resource Center (MIDRC), is challenging due to the inherent complexity of image content and the ...
Authors: John Ginn, Chenlu Qin, Deshan Yang
Affiliation: Duke University, Department of Radiation Oncology, Duke University
Abstract Preview: Purpose: Clinical implementation of auto-segmentation tools has been hindered by poor interpretability and generalizability of AI models, necessitating the development of automated contour quality ass...
Authors: George Agrotis, Marios Myronakis, Dimitrios Samaras, Kyriaki Theodorou, Ioannis Tsougos, Vassilios Tzortzis, Maria Vakalopoulou, Alexandros Vamvakas, Aikaterini Vassiou, Marianna Vlychou
Affiliation: Medical Physics Department, Medical School, University of Thessaly, Department of Radiology, University of Thessaly, Netherland Cancer Institute, Department of Urology, University of Thessaly, CentraleSupelec, University Paris-Saclay
Abstract Preview: Purpose: Prostate cancer (PCa) diagnosis remains challenging due to discrepancies in Gleason Scoring (GS) and risks of overdiagnosis and underdiagnosis. Multiparametric MRI (mpMRI), including Apparent...
Authors: Clint Bahler, Ruchika Reddy Chimmula, Harrison Louis Love, Oluwaseyi Oderinde, Courtney Yong
Affiliation: Purdue University, Department of Urology, Indiana University School of Medicine, Advanced Molecular Imaging in Radiotherapy (AdMIRe) Research Laboratory, School of Health Sciences, Purdue University
Abstract Preview: Purpose: Prostate cancer (PCa) is a common malignancy in men, and predicting biochemical recurrence (BCR) is crucial for guiding treatment decisions. Integrating multimodal data, including clinical, i...
Authors: Huang Chi-Shiuan, Wu Chih-Chun, Hui-Yu Cathy Tsai, Chen Yan-Han, Chen Yi-Wei, Pan Yi-Ying
Affiliation: Institute of Nuclear Engineering and Science, National Tsing Hua University, Taipei Veterans General Hospital, Tri-Service General Hospital
Abstract Preview: Purpose:
This study aims to develop and validate a machine learning (ML) model based on MRI-derived radiomic features to predict progressive disease (PD) in glioblastoma (GBM) patients four months ...
Authors: Waleed Mutlaq Almutairi, Ke Colin Huang, Vishwas Mukundan, Christopher F. Njeh, Oluwaseyi Oderinde, Yong Yue
Affiliation: Purdue University, Indiana University School of Medicine, Department of Radiation Oncology, Advanced Molecular Imaging in Radiotherapy (AdMIRe) Research Laboratory, Purdue University, West Lafayette, Indiana, USA
Abstract Preview: Purpose:
This study aimed to develop a machine learning (ML) model for early prediction of chemoradiotherapy (CRT) response in order to enhance personalized treatment selection for oral or orophary...
Authors: Yeona Cho, Chloe Min Seo Choi, Joseph O. Deasy, Jue Jiang, Jihun Kim, Jin Sung Kim, Nikhil Mankuzhy, Aneesh Rangnekar, Andreas Rimner, Maria Thor, Harini Veeraraghavan, Abraham Wu
Affiliation: University of Freibrug, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Memorial Sloan Kettering Cancer Center, Yonsei University
Abstract Preview: Purpose: We hypothesized that combining clinical, imaging, and radiotherapy dose-distribution features could increase predictive model accuracy in radiation-induced severe acute esophagitis (SAE) in e...
Authors: Qianxi Ni, Qionghui Zhou
Affiliation: The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University
Abstract Preview: Purpose:
This study aims to develop and evaluate interpretable machine learning models that use radiomic and dosimetric features to predict HT in advanced cervical cancer patients.
Methods:
R...
Authors: Lian Duan, Stephen F. Kry, Hunter S. Mehrens, Paige A. Taylor
Affiliation: The University of Texas MD Anderson Cancer Center, UT MD Anderson Cancer Center
Abstract Preview: Purpose: To develop a machine learning model for predicting dose delivery accuracy and identifying its key factors in IROC’s proton phantom program.
Methods: IROC’s proton QA program has six proton...
Authors: Yukio Fujita, Syoma Ide, Kei Ito, Tomohiro Kajikawa, Satoshi Kito, Keiko Murofushi, Yujiro Nakajima, Yuhi Suda, Kentaro Taguchi, Naoki Tohyama, Fumiya Tsurumaki
Affiliation: Komazawa University Graduate School, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Department of Radiology, Kyoto Prefectural University of Medicine
Abstract Preview: Purpose: Stereotactic body radiotherapy (SBRT) for spine metastases is more effective for pain relief and local control than conventional radiotherapy. However, it is associated with vertebral compres...
Authors: Emi Ai Eastman, Vu Nguyen, Alexander W. Scott, Lucien Zang, Yifang (Jimmy) Zhou
Affiliation: Cedars-Sinai Medical Center
Abstract Preview: Purpose:
Three key features were developed to substantially improve a previously in-house developed CT protocol website: a structured backend for efficient protocol creation and edit; the ability t...
Authors: Vishruta A. Dumane, Andrew Lukban, Kiran Pant, Charlotte Elizabeth Read, Ren-Dih Sheu, Nadia M. Vassell
Affiliation: Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, Department of Radiation Oncology
Abstract Preview: Purpose: This work introduces a refined in-house modified COMS eye plaque management system to streamline processes, reduce redundancies, and enhance usability.
Methods: A web-based application wit...
Authors: Rajeev K. Badkul, Ronald C Chen, Ying Hou, Harold Li, Chaoqiong Ma, Jufri Setianegara
Affiliation: Department of Radiation Oncology, University of Kansas Medical Center
Abstract Preview: Purpose:
Postimplant urinary toxicity is common in prostate low-dose-rate (LDR) brachytherapy. We developed a machine learning (ML) model to explore the correlation between spatial dose distributio...
Authors: Issam M. El Naqa, Kurukulasuriya Ruwani Fernando, Himani Himani, Vivek Kumar, Arun Oinam, Manju Sharma
Affiliation: Panjab University, Moffitt Cancer Center, H. Lee Moffitt Cancer Center, Post Graduate Institute of Medical Sciences, University of California San Francisco
Abstract Preview: Purpose: To investigate the utility of Magnetic Resonance Imaging (MRI)-based radiomics for predicting tumor response and adverse effects, specifically gastrointestinal (GI) toxicity, in cervical canc...
Authors: Ibtisam Almajnooni, Siyong Kim, Nathaniel Miller, Elisabeth Weiss, Lulin Yuan
Affiliation: Virginia Commonwealth University
Abstract Preview: Purpose: Radiation-induced esophagitis (RE) is a common concern in lung cancer IMRT. Recent studies have indicated that the risk of radiation side effects varies greatly with patients’ baseline clinic...
Authors: Matthew C Abramowitz, Alan Dal Pra, Rodrigo Delgadillo, Nesrin Dogan, John C. Ford, Kyle R. Padgett, Levent Sensoy, Benjamin Spieler, Matthew T. Studenski, Jace Allen Walker
Affiliation: University of Miami, Department of Radiation Oncology, University of Miami, University of Miami Sylvester Comprehensive Cancer Center, University of Miami School of Medicine
Abstract Preview: Purpose:
Toxicities that affect a patient’s quality-of-life due to prostate cancer (pCa) radiation therapy (RT) are receiving more attention as RT has become increasingly successful in treating pCA...