Search Submissions 🔎

Results for "features extracted": 70 found

18F-FDG PET/CT-Based Deep Radiomic Models for Enhancing Chemotherapy Response Prediction in Breast Cancer

Authors: Ke Colin Huang, Zirui Jiang, Joshua Low, Christopher F. Njeh, Oluwaseyi Oderinde, Yong Yue

Affiliation: Purdue University, Indiana University School of Medicine, Department of Radiation Oncology

Abstract Preview: Purpose: Enhancing the accuracy of tumor response predictions enables the development of tailored therapeutic strategies for patients with breast cancer (BCa). In this study, we developed deep-radiomi...

3D Topological Features for Outcome Assessment of Therapeutic Responses to Neoadjuvant Chemoradiotherapy (NCRT) with and without Anti-CD40 Immunotherapy in Local Advanced Rectal Cancer (LARC)

Authors: Todd A Aguilera, Gaurav Khatri, Jiaqi Liu, Hao Peng, Nina N. Sanford, Robert Timmerman, Haozhao Zhang

Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, UT southwestern medical center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
This study first integrates 3D topological data analysis with radiomics from local advanced rectal cancer T2-weighted MRI to evaluate therapeutic responses and quantify treatment-induced c...

A Combination of Radiomics and Dosiomics for Gross Tumor Volume Regression in Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy (PULSAR)

Authors: Hao Peng, Yajun Yu

Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Personalized ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) is a novel ablative radiation dosing scheme developed by our institution. This study aims to establish a regression...

A Conditional Point Cloud Diffusion Model for Deformable Liver Motion Tracking Via a Single Arbitrarily-Angled X-Ray Projection (PCD-Liver)

Authors: Yunxiang Li, Hua-Chieh Shao, Chenyang Shen, Jing Wang, Jiacheng Xie, Shunyu Yan, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, The University of Texas at Dallas

Abstract Preview: Purpose: Accurate liver deformable motion tracking is essential in image-guided radiotherapy to enable precise tumor targeting during treatment. We developed a conditional point cloud diffusion model ...

A Hybrid Radiomics-Integrated Machine Learning Framework for Early Identification of Potential Radiation Pneumonitis in Lung Cancer Patients

Authors: Christos Ilioudis, Marios Myronakis, Sotirios Raptis, Kyriaki Theodorou

Affiliation: Medical Physics Department, Medical School, University of Thessaly, Department of Information and Electronic Engineering, International Hellenic University (IHU)

Abstract Preview: Purpose: This study presents a radiomics-driven, machine learning framework developed to predict the possibility of Radiation Pneumonitis (RP), as a side effect of radiation therapy in lung cancer pat...

A Multi-Agent Approach for Fully Automated Nephrometry Feature Extraction in CT

Authors: Matthew S Brown, Joshua Genender, John M. Hoffman, Gabriel Melendez-Corres, Muhammad W. Wahi-Anwar

Affiliation: David Geffen School of Medicine at UCLA, UCLA Department of Radiology

Abstract Preview: Purpose: Renal lesions are evaluated using scoring systems based on visual assessments and manual measurements. The purpose of this work is to develop a multi-agent system for automated anatomic landm...

A Multi-Regional and Multi-Omics Approach to Predict Penumonitis in Patients with Locally Advanced Non-Small Cell Lung Cancer in Nrg Oncology Trial RTOG 0617

Authors: Katelyn M. Atkins, Indrin J. Chetty, Elizabeth M. McKenzie, Taman Upadhaya, Samuel C. Zhang

Affiliation: Department of Radiation Oncology,Cedars-Sinai Medical Center, Cedars-Sinai Medical Center

Abstract Preview: Purpose:
We explored a multi-regional and multi-omics approach to extract CT-based radiomics and 3D dosiomics features to predict radiation pneumonitis (RP) in patients with locally advanced Non-Sm...

A Novel Non-Measured and DVH-Based IMRT QA Framework with Machine Learning for Instant Classification of Susceptible Lung SBRT VMAT Plans

Authors: Chuan He, Anh H. Le, Iris Z. Wang

Affiliation: Roswell Park Comprehensive Cancer Center, Cedars-Sinai

Abstract Preview: Purpose: To develop a non-measured and DVH-based (NMDB) IMRT QA framework integrating machine learning (ML) to classify lung SBRT VMAT plans prone to delivery errors
Methods: 560 Eclipse AcurosXB l...

A Radiomic Quantification Framework for Hyperparameter Optimization in Texture Characterization

Authors: Yuli Lu, Chendong Ni, Cheng Qian, Kun Qian, Weiwei Sang, Chunhao Wang, Fan Xia, Zhenyu Yang, Fang-Fang Yin, Rihui Zhang, Haiming Zhu

Affiliation: Jiahui International Hospital, Radiation Oncology, Duke University, Medical Physics Graduate Program, Duke Kunshan University, Duke Kunshan University, The First People's Hospital of Kunshan

Abstract Preview: Purpose: To develop a radiomic quantification framework to evaluate the effects of radiomic image preprocessing hyperparameters (i.e., image resampling and discretization) on texture characterization ...

A Topological Technique to Unify Image Texture and Morphology to Enhance Radiomic Feature Representations

Authors: David Brizel, Kyle J. Lafata, Jian-Guo Liu, Yvonne M Mowery, Yvonne M Mowery, William Paul Segars, Jack B Stevens

Affiliation: Department of Physics, Duke University, Carl E. Ravin Advanced Imaging Laboratories and Center for Virtual Imaging Trials, Duke University Medical Center, Duke University, Department of Radiation Oncology, Duke University, University of Pittsburgh

Abstract Preview: Purpose: To develop a technique to quantify tumor topology using a unifying mathematical framework that integrates texture and morphology and to evaluate its feasibility as a prognostic biomarker for ...

A Two-Layer, Two-Task Prediction Model Based on 3D Imaging and Residual Networks for Mid-Chemoradiation Tumor Response Prediction on FDG PET for La-NSCLC

Authors: Stephen R. Bowen, Chunyan Duan, Daniel S. Hippe, Qiantuo Liu, Jing Sun, Jiajie Wang, Shouyi Wang, Faisal Yaseen, Xiaojing Zhu

Affiliation: Tongji University, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Shanghai University of Electric Power, Fred Hutchinson Cancer Center, University of Texas at Arlington

Abstract Preview: Purpose: Accurate prediction of patient response to radiotherapy plays a crucial role in monitoring disease progression and assessing treatment efficacy, enabling clinicians to develop personalized th...

A Vision-Language Deep Learning Model for Predicting Survival Outcomes in Glioblastoma Patients

Authors: Zachary Buchwald, Chih-Wei Chang, Richard L.J. Qiu, Mojtaba Safari, Hui-Kuo Shu, Lisa Sudmeier, Xiaofeng Yang, David Yu, Xiaohan Yuan

Affiliation: Emory University and Winship Cancer Institute, Emory University, Georgia Institute of Technology, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: This study proposes a novel vision-language model (VLM) to predict survival outcomes in glioblastoma (GBM) patients. By integrating multimodal MRI data and clinical information, the proposed ...

A Vision-Language Model for T1-Contrast Enhanced MRI Generation for Glioma Patients

Authors: Zachary Buchwald, Zach Eidex, Richard L.J. Qiu, Justin R. Roper, Mojtaba Safari, Hui-Kuo Shu, Xiaofeng Yang, David Yu

Affiliation: Emory University and Winship Cancer Institute, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Gadolinium-based contrast agents (GBCA) are commonly used for patients with gliomas to delineate and characterize the brain tumors using T1-weighted (T1W) MRI. However, there is a rising conc...

Abdomen CT Multi-Organ Segmentation Using Multi-Granularity Feature Extraction

Authors: Zilei Fu, Yi Guo, Wanli Huo, Hongdong Liu, Laishui Lyu, Zhao Peng, Yaping Qi, Senting Wang

Affiliation: Department of Radiotherapy, cancer center, The First Affiliated Hospital of Fujian Medical University, the Zhejiang-New Zealand Joint Vision-Based Intelligent Metrology Laboratory, College of Information Engineering, China Jiliang University, Division of lonizing Radiation Metrology, National Institute of Metrology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, China Jiliang University, Department of Oncology, Xiangya Hospital, Central South University

Abstract Preview: Purpose: Medical image boundaries are commonly characterized by smooth gray-level transitions, resulting in pixel-level segmentation errors near these blurred boundaries. To address this, we developed...

Addressing Missing MRI Sequences: A DL-Based Region-Focused Multi-Sequence Framework for Synthetic Image Generation

Authors: Amir Abdollahi, Oliver Jäkel, Maxmillian Knoll, Rakshana Murugan, Adithya Raman, Patrick Salome

Affiliation: UKHD & DKFZ, Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), German Cancer Research Centre(DKFZ), DKFZ, MGH

Abstract Preview: Purpose:
Missing MRI sequences, due to technical issues in data handling or clinical constraints like contrast agent intolerance, limit the use of medical imaging datasets in computational analysis...

Advancing Ionizing Radiation Acoustic Imaging: A Deep Learning Approach for Denoising and Quantitative Reconstruction

Authors: Kyle Cuneo, Issam M. El Naqa, Dale W. Litzenberg, Yiming Liu, Xueding Wang, Lise Wei, Wei Zhang, Jiaren Zou

Affiliation: University of Michigan, H. Lee Moffitt Cancer Center

Abstract Preview: Purpose: To quantitatively map 3D dose deposition during radiotherapy, empowering real-time adaptive radiation treatment.

Methods: The research features reconstructing dose deposition from acou...

Advancing the Evaluation of Radiation-Induced Vaginal Toxicity Using Ultrasound Radiomics: Phantom Validation and Pilot Clinical Study

Authors: Himanshu Joshi, Tian Liu, Deborah C Marshall, Joseph Shelton, Jing Wang, Xiaofeng Yang, Emi Yoshida, Boran Zhou

Affiliation: Department of Radiation Oncology, Baylor College of Medicine, Icahn School of Medicine at Mount Sinai, Emory University, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, Department of Radiation Oncology, University of California, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Radiation-induced long-term toxicities, such as vaginal stenosis, significantly impact the quality of life for patients undergoing pelvic radiotherapy (RT) for gynecologic (GYN) malignancies....

An Image Representation of Radiomics Data for Enhanced Deep Radiomics Analysis with Consideration of Feature Interactions

Authors: Xiaolong Fu, Runping Hou, Md Tauhidul Islam, Lei Xing

Affiliation: Department of Radiation Oncology, Stanford University, Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine

Abstract Preview: Purpose: To introduce a novel schematic image representation of radiomics data, called OmicsMap, for high-performance deep radiomics analysis. OmicsMap transforms tabular radiomics data into an image ...

Automated Diagnosis of Pancreatic Cancer Using Both Radiomics and 3D-Convolutional Neural Network

Authors: Beth Bradshaw Ghavidel, Benyamin Khajetash, Yang Lei, Meysam Tavakoli

Affiliation: Icahn School of Medicine at Mount Sinai, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Emory University, Department of Radiation Oncology, Emory University

Abstract Preview: Purpose: Pancreatic cancer is among the most aggressive types of cancer, with a five-year survival rate of approximately 10%. Recent studies show that radiomics and deep learning (DL)-based methods ar...

Automated Framework for Predicting Tumour Growth in Vestibular Schwannomas Using Contrast-Enhanced T1-Weighted MRI

Authors: Mehdi Amini, Minerva Becker, Simina Chiriac, Alexandre Cusin, Dimitrios Daskalou, Ghasem Hajianfar, Sophie Neveu, Marcella Pucci, Yazdan Salimi, Pascal Senn, Habib Zaidi

Affiliation: Geneva University Hospital, Division of Radiology, Diagnostic Department, Geneva University Hospitals, Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals

Abstract Preview: Purpose: Personalized prediction of vestibular schwannoma (VS) tumour growth is crucial for guiding patient management decisions toward observation versus intervention. This study proposes an automate...

BEST IN PHYSICS IMAGING: Cross-Contrast Diffusion: A Synergistic Approach for Simultaneous Multi-Contrast MRI Super-Resolution

Authors: Yifei Hao, Wenxuan Li, Xiang Li, Tao Peng, Yulu Wu, Fang-Fang Yin, Yue Yuan, Lei Zhang, Yaogong Zhang

Affiliation: Duke University, School of Future Science and Engineering, Soochow University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Diffusion-based deep-learning frameworks have been recently used in MRI resolution enhancement, or super-resolution. Multi-contrast MRI share common anatomical structures while holding comple...

BEST IN PHYSICS MULTI-DISCIPLINARY: Foundation Model-Empowered Unsupervised 3D Deformable Medical Image Registration

Authors: Xianjin Dai, PhD, Zhuoran Jiang, Lei Ren, Lei Xing, Zhendong Zhang

Affiliation: University of Maryland School of Medicine, Department of Radiation Oncology, Stanford University, Duke University, Stanford University

Abstract Preview: Purpose: Unsupervised deep learning has shown great promise in deformable image registration (DIR). These methods update model weights to optimize image similarity without necessitating ground truth d...

BEST IN PHYSICS THERAPY: Overcoming Challenges in Developing Machine Learning-Driven Acute Kidney Injury Predictive Models Using Non-Standard Emrs in Resource-Limited Settings

Authors: Yuanhan Chen, Ziqiang Chen, Qi Cheng, Feng Ding, Rui Fang, Shengwen Guo, Li Hao, Qiang He, Haiquan Huang, Yu Kuang, Xinling Liang, Yuanjiang Liao, Guohui Liu, Chen Lu, Qingquan Luo, Jing Sun, Yanhua Wu, Zhen Xie, Qin Zhang, Lang Zhou

Affiliation: South China University of Technology, Dongguan people's hospital, Sichuan Provincial People's Hospital, People’s Hospital of Xinjiang Uygur Autonomous Region, Second Hospital of Anhui Medical University, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Easy Life Information Technology Co., Ltd, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Medical Physics Program, University of Nevada, Second Hospital of Jilin University, Chongqing Ninth People's Hospital

Abstract Preview: Purpose: Acute kidney injury (AKI) is a global healthcare issue with a rapid onset and severe consequences. Repeated measurement of serum creatinine (SCr) levels, a clinical standard of care, is cruci...

Beyond Correlation: An Ultra-Large Physics-Driven Vascularized Tumor Model to Bridge Feature Formation with Underlying Biology

Authors: Jiayi Du, Lihua Jin, Ke Sheng, Yu Zhou

Affiliation: Harvard University, University of California, San Francisco, UCLA, Department of Radiation Oncology, University of California, San Francisco

Abstract Preview: Purpose: Radiomics enables powerful insights into tumor biology through non-invasive imaging, excelling in diagnostic and prognostic predictions. However, due to a lack of mechanistic connections, que...

Breast Fascial Ligament Characterization Using Cryo-Fluorescence Tomography Imaging

Authors: Taylor A Beal, Kari J. Brewer Savannah, Kristy K. Brock, Alejandro Contreras, Natalie W Fowlkes, Megan Kalambo, Gregory P Reece, Erin P Snoddy, Tien T Tang

Affiliation: The University of Texas MD Anderson Cancer Center, Baylor College of Medicine

Abstract Preview: Purpose: Current anatomical and surgical research does not adequately detail the breast fascial system’s ligaments and connective tissues. Most available information stems from cadaver dissections, wh...

CBCT-Based Radiomics of Head and Neck Cancer for Predicting Patient Toxicity to Radiotherapy

Authors: Rodrigo Delgadillo, Nesrin Dogan, Benjamin J. Rich, Stuart E Samuels, Levent Sensoy

Affiliation: University of Miami Sylvester Comprehensive Cancer Center

Abstract Preview: Purpose: Daily Cone beam CT (CBCT) images may be useful in detecting early morphological changes during head and neck cancer radiotherapy. The aim of this study was to evaluate the performance of CBCT...

CT Jacobian-Derived Texture-Based Radiomics Biomarker Predicts Future COPD Exacerbations

Authors: Jean Bourbeau, Jim Hogg, Miranda Kirby, Meghan Koo, Kalysta Makimoto, Wan Tan

Affiliation: Montreal Chest Institute of the Royal Victoria Hospital, McGill University Health Centre, Toronto Metropolitan University, Centre for Heart Lung Innovation, University of British Columbia

Abstract Preview: Purpose: Chronic obstructive pulmonary disease (COPD) exacerbations are burdensome to patients and healthcare systems. CT imaging-derived measures of emphysema and airway remodeling have been shown to...

Can Regional Radiomic Features from Pre-Treatment Computed Tomography Serve As Biomarkers for Predicting Radiation Pneumonitis?

Authors: David J. Carlson, Ming Chao, Tian Liu, Yong Hum Na, Kenneth E Rosenzweig, Robert Samstein, Lewis Tomalin

Affiliation: Icahn School of Medicine at Mount Sinai, Yale University School of Medicine, Department of Therapeutic Radiology, Yale University School of Medicine

Abstract Preview: Purpose: To investigate the potential of regional radiomic features extracted from five lung sub-lobes on pre-treatment CT as biomarkers for predicting radiation pneumonitis (RP) using machine learnin...

Design and Construction of a Geometrical and Head Phantom with Internal Carotid Inserts for Flow Simulation in Image-Derived Input Function with 3T and 7T MR-Brainpet Insert Studies.

Authors: Dirk Grunwald, Hans Herzog, Hidehiro Iida, N. Jon Shah, Usman Khalid, Manfred Lennartz, Philipp Lohmann, Ceren Memis, Tobias Meurer, Claudia Regio Brambilla, Jürgen Scheins, Lutz Tellmann, Christoph W. Lerche, Martin Wiesmann, Karl Ziemons

Affiliation: FH Aachen University of Applied Sciences, Department of Chemistry and Biotechnology, Clinic for Diagnostic and Interventional Neuroradiology, Uniklinik Aachen,, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH,, Central Institute for Engineering, Electronics and Analytics (ZEA-1), Forschungszentrum, Turku PET Center, Institute of Biomedicine, Faculty of Medicine, University of Turku,

Abstract Preview: Purpose: Quantitative brain studies with positron emission tomography (PET) often require an arterial input function (AIF), which traditionally requires arterial cannulation. However, this is invasive...

Developing a Dataset for Investigations into the Impact of CT Acquisition and Reconstruction Conditions on Quantitative Imaging Using Paired Image Quality and Radiomics Phantom Data

Authors: Morgan A. Daly, David J. Goodenough, Andrew M. Hernandez, John M. Hoffman, Joshua Levy, Michael F. McNitt-Gray, Ali Uneri, Bino Varghese

Affiliation: University of California, George Washington University, David Geffen School of Medicine at UCLA, Johns Hopkins Univ, University of Southern California, The Phantom Laboratory

Abstract Preview: Purpose: Quantitative imaging is affected by CT acquisition and reconstruction conditions, limiting robustness in multi-site or -scanner studies. This work aimed to develop a dataset that will enable ...

Enhanced Lung Function Assessment through Machine Learning Analysis of 4DCT Subregional Respiratory Dynamics

Authors: Jing Cai, Zhi Chen, Hong Ge, Yu-Hua Huang, Bing Li, Zihan Li, Ge Ren

Affiliation: Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital

Abstract Preview: Purpose: Algorithms based on subregional respiratory dynamics (SRD) capture spatiotemporal heterogeneity in the ventilation process, though rely on empirical modelings to map surrogate ventilation. Gi...

Enhanced Prognostic Modeling for Clear Cell Renal Cell Carcinoma Via Multi-Omics Model and Computational Pathology Foundation Model Integration

Authors: James Brugarolas, Meixu Chen, Raquibul Hannan, Payal Kapur, Jing Wang, Kai Wang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, University of Maryland Medical Center

Abstract Preview: Purpose: Accurate prognosis of clear cell renal cell carcinoma (ccRCC) is essential for guiding personalized treatment planning. In this study, we present a multi-modal ensemble model (MMEM) that inte...

Enhancing Radiotherapy Planning with Machine Learning: Correlating Anatomical Features and Planning Difficulty to Guide Optimal Plan Design

Authors: Li Chen, Shouliang Ding, Xiaoyan Huang, Lecheng Jia, Hua Li, Hongdong Liu, Yanfei Liu, Zun Piao, Guangyu Wang

Affiliation: State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Shenzhen United Imaging Research Institute of Innovative Medical Equipment

Abstract Preview: Purpose: Optimal radiotherapy planning is challenging, influenced by anatomical factors such as surrounding organs and tumor characteristics, which complicate dose distribution and target coverage. Wh...

Evaluating the Impact of Contour Variability on the Effectiveness of Deep Learning Features in Head and Neck Imaging

Authors: Hania A. Al-Hallaq, Xuxin Chen, Anees H. Dhabaan, Elahheh (Ella) Salari, Xiaofeng Yang

Affiliation: Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose:
Radiomics image analysis could lead to the development of predictive signatures and personalized radiotherapy treatments. However, variations in delineation are known to affect hand-crafte...

Evaluating the Role of Gradient Magnitude in Entorhinal Cortex for Dementia Diagnosis Using T1 MR Images

Authors: Yongha Gi, Jinju Heo, Jinyoung Hong, Yunhui Jo, Yousun KO, HyeongJin Lim, Sang Yoon PARK, Myonggeun Yoon

Affiliation: Korea University, Institute of Global Health Technology (IGHT), Korea University, Republic of Korea

Abstract Preview: Purpose: To evaluate the effectiveness of the gradient magnitude (GM) feature of the entorhinal cortex, observed in T1 MR images, in dementia classification.
Methods: A total of 1,422 ADNI T1 MR da...

Evaluation of Radiomic Feature Robustness in Quantitative CBCT Imaging for Radiotherapy of Prostate Cancer

Authors: Cem Altunbas, Farhang Bayat, Roy Bliley, Brian Kavanagh, Uttam Pyakurel, Tyler Robin, Ryan Sabounchi

Affiliation: Department of Radiation Oncology, University of Colorado School of Medicine, Taussig Cancer Center, Cleveland Clinic

Abstract Preview: Purpose: The use of image features extracted from serial CBCT images to assess radiotherapy response and toxicity is an active research area. However, poor image quality often compromises reliability ...

Feasibility of Developing a Radiomic Fingerprint to Predict Pulmonary Embolism Clot Types to Aid in Determining Intervention for Intermediate-Risk Patients.

Authors: Lindsay Hammons, Lisa Baumann Kreuziger, Haidy G. Nasief, Matthew Scheidt, Farrell Sean, Antonio Sosa Lozano

Affiliation: Division of Hematology and Oncology, University of Washington, Vascular and Interventional Radiology, Medical college of wisconsin, Department of Radiation Oncology, Medical College of Wisconsin

Abstract Preview: Purpose: Venous thromboembolism, which includes pulmonary embolism (PE), is the third leading cause of acute cardiovascular syndrome behind myocardial infarction and stroke. Current research categoriz...

Foundation Model-Augmented Learning for Automatic Delineation in Precision Radiotherapy

Authors: Xianjin Dai, PhD, Michael Gensheimer, Praveenbalaji Rajendran, Lei Xing, Yong Yang

Affiliation: Department of Radiation Oncology, Stanford University, Massachusetts General Hospital, Harvard Medical School

Abstract Preview: Purpose: Recent advances in the automatic delineation of radiotherapy treatment targets, which incorporate linguistic clinical data extracted by large language models (LLMs) into traditional visual-on...

Gradient-Based Radiomics for Outcome Prediction and Decision-Making in Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy (PULSAR): A Preliminary Study

Authors: Michael Dohopolski, Jiaqi Liu, Hao Peng, Robert Timmerman, Zabi Wardak, Haozhao Zhang

Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
This study introduces a gradient-based radiomics framework to enhance outcome prediction in Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy (PULSAR) for brain metastases...

Graph Neural Network with Long Short-Term Memory for CT-Based Macrotrabecular-Massive Hepatocellular Carcinoma Diagnosis

Authors: Enhui Chang, Yunfei Dong, Yifei Hao, Chengliang Jin, Shengsheng Lai, Yi Long, Mengni Wu, Yulu Wu, Ruimeng Yang, Zhenyu Yang, Yue Yuan, Lei Zhang, Wanli Zhang, Yaogong Zhang

Affiliation: Duke Kunshan University, Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Macrotrabecular-Massive Hepatocellular Carcinoma (MTM-HCC) is one type of liver cancer showed minimum image signature for accurate non-invasive diagnosis. This study aims to develop and evalu...

Graph-Based Feature Selection to Improve Stability and Reproducibility of CT-Based Radiomics in Head and Neck Squamous Cell Carcinoma: A Cross-Institutional Study

Authors: Daria Gaykalova, Ranee Mehra, Jason K Molitoris, Hajar Moradmand, Lei Ren, Amit Sawant, Phuoc Tran

Affiliation: University of Maryland School of Medicine, Maryland University Baltimore, University of Maryland, Department of Radiation Oncology, University of Maryland School of Medicine

Abstract Preview: Purpose: Radiomics extracts quantitative imaging biomarkers from medical images. However, maintaining the reproducibility and stability of selected features across institutions and parameter settings ...

Image Similarity Measurement Based on Handcrafted and Deep Learning Radiomics

Authors: John Ginn, Chenlu Qin, Deshan Yang

Affiliation: Duke University, Department of Radiation Oncology, Duke University

Abstract Preview: Purpose: Clinical implementation of auto-segmentation tools has been hindered by poor interpretability and generalizability of AI models, necessitating the development of automated contour quality ass...

Implementing a Learning-to-Optimize Machine Learning Framework to Accelerate VMAT Treatment Planning Optimization for Prostate Cancer

Authors: Ara Alexandrian, Sadiki Daniel

Affiliation: Louisiana State University, Mary Bird Perkins Cancer Center

Abstract Preview: Purpose: To develop a learning-to-optimize machine learning model that accelerates optimization in VMAT treatment planning by training on prostate patient data.
Methods: A treatment plan dataset of...

Innovative Deep Learning Network for Overall Survival Prediction for NSCLC: Outperforming Pre-Trained Models VGG16 and ResNet50

Authors: Ryan Alden, Tithi Biswas, Kaushik Halder, Felix Maria-Joseph, Michael Mix, Rihan Podder, Tarun Kanti Podder

Affiliation: SUNY Upstate Medical University, IIT-Roorkee, University of Florida

Abstract Preview: Purpose: Early-stage NSCLC patients undergoing SBRT often die due to intercurrent illnesses. However, prediction of overall survival (OS) remains crucial due to the risk of disease recurrence. This st...

Integrating Clinical Knowledge Via Llms for Precise Organ-at-Risk Segmentation in Pancreatic Cancer SBRT

Authors: Karyn A Goodman, Yang Lei, Tian Liu, Pretesh Patel, Jing Wang, Kaida Yang, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: This study aims to improve organ-at-risk (OAR) segmentation in pancreatic cancer stereotactic body radiotherapy (SBRT) by integrating clinical guidelines into deep learning workflows. We use ...

Integrating Radiomics and ADC Ratio for Multicenter Prostate Cancer Diagnosis: A Harmonized Machine Learning Approach

Authors: George Agrotis, Marios Myronakis, Dimitrios Samaras, Kyriaki Theodorou, Ioannis Tsougos, Vassilios Tzortzis, Maria Vakalopoulou, Alexandros Vamvakas, Aikaterini Vassiou, Marianna Vlychou

Affiliation: Medical Physics Department, Medical School, University of Thessaly, Department of Radiology, University of Thessaly, Netherland Cancer Institute, Department of Urology, University of Thessaly, CentraleSupelec, University Paris-Saclay

Abstract Preview: Purpose: Prostate cancer (PCa) diagnosis remains challenging due to discrepancies in Gleason Scoring (GS) and risks of overdiagnosis and underdiagnosis. Multiparametric MRI (mpMRI), including Apparent...

Key Tumor Volume Zones for Advancing the Radiomics-Based Distant Recurrence Prediction

Authors: Ryan Alden, Tithi Biswas, Kaushik Halder, Felix Maria-Joseph, Michael Mix, Rihan Podder, Tarun Kanti Podder

Affiliation: SUNY Upstate Medical University, IIT-Roorkee, University of Florida

Abstract Preview: Purpose: Radiomics feature-based model for predicting distant recurrence can potentially provide critical insight for clinical decision-making and assistance in treatment strategies. This study focuse...

Latent Diffusion Model-Driven Semi-Supervised Semantic Segmentation of Cell Nuclei

Authors: Mark Anastasio, Hua Li, Zhuchen Shao

Affiliation: Washington University School of Medicine, University of Illinois Urbana-Champaign

Abstract Preview: Purpose: Automated semantic segmentation of cell nuclei in microscopic images is vital for disease diagnosis and tissue microenvironment analysis. However, obtaining large annotated datasets for train...

Latent Diffusion for 3D CT Reconstruction from Biplanar X-Rays

Authors: Guha Balakrishnan, Osama R. Mawlawi, Yiran Sun, Ashok Veeraraghavan

Affiliation: RICE University, UT MD Anderson Cancer Center

Abstract Preview: Purpose:
Previous deep learning (DL) techniques such as X2CT-GAN [1] has shown great promise in reconstructing realistic CT volume from biplanar X-rays, however they introduce numerous artifacts in...

Lymphocytic Feature Characterization Using a Deep Learning Algorithm on Post-Radiation Lymph Nodes

Authors: Rico Castillo, Katherine Gonzalez, Casey C. Heirman, Kyle J. Lafata, Casey Y. Lee, Xiang Li, Yvonne M Mowery, Yvonne M Mowery, Daniel Murphy, Allison Pittman, Ashlyn G. Rickard

Affiliation: Duke University, Department of Radiation Oncology, Duke University, University of Pittsburgh

Abstract Preview: Purpose: To evaluate the ability of a deep learning model to identify pathomic features in lymph nodes of preclinical head and neck squamous cell carcinoma (HNSCC) models as surrogates for predicting ...

MRI Radiomics-Based Machine Learning Model for Predicting BNCT Treatment Response in Glioblastoma

Authors: Huang Chi-Shiuan, Wu Chih-Chun, Hui-Yu Cathy Tsai, Chen Yan-Han, Chen Yi-Wei, Pan Yi-Ying

Affiliation: Institute of Nuclear Engineering and Science, National Tsing Hua University, Taipei Veterans General Hospital, Tri-Service General Hospital

Abstract Preview: Purpose:
This study aims to develop and validate a machine learning (ML) model based on MRI-derived radiomic features to predict progressive disease (PD) in glioblastoma (GBM) patients four months ...

Machine Learning Model for Early Prediction of Chemoradiotherapy Response in Oropharyngeal Cancer Patients

Authors: Waleed Mutlaq Almutairi, Ke Colin Huang, Vishwas Mukundan, Christopher F. Njeh, Oluwaseyi Oderinde, Yong Yue

Affiliation: Purdue University, Indiana University School of Medicine, Department of Radiation Oncology, Advanced Molecular Imaging in Radiotherapy (AdMIRe) Research Laboratory, Purdue University, West Lafayette, Indiana, USA

Abstract Preview: Purpose:
This study aimed to develop a machine learning (ML) model for early prediction of chemoradiotherapy (CRT) response in order to enhance personalized treatment selection for oral or orophary...

Multi-Mechanism CNN and Long Short-Term Memory Fusion Model for Improved CT-Based Thyroid Cancer Diagnosis

Authors: Yunfei Dong, Dongyang Guo, Jiongli Pan, Tao Peng, Caiyin Tang, Zhenyu Yang, Fang-Fang Yin, Lei Zhang, Tianyi Zhang, Yaogong Zhang

Affiliation: Duke Kunshan University, Department of Radiology, Taizhou People’s Hospital Affiliated to Nanjing Medical University, School of Future Science and Engineering, Soochow University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: This study aims to improve the accuracy of CT-based diagnosis of thyroid cancer by developing a hybrid model that integrates Convolutional Neural Networks (CNNs) with Long Short-Term Memory (...

Multi-Omics-Based Prognostic Prediction for Locally Advanced Hypopharyngeal Cancer Treated with Postoperative Chemoradiotherapy: A Dual-Center Study

Authors: Sixue Dong, Chaosu Hu, Weigang Hu, Xiaomin Ou, Jiazhou Wang, Zhen Zhang

Affiliation: Fudan University Shanghai Cancer Center

Abstract Preview: Purpose:
This study aimed to predict the PFS of the patients who were diagnosed with hypopharyngeal cancer and received postoperative chemoradiotherapy by using multi-omics which integrating clinic...

Multi-Region Multiomic Features Improve Random Forest Toxicity Modeling of Radiation Pneumonitis

Authors: Laurence Edward Court, Alexandra Olivia Leone, Zhongxing Liao, Saurabh Shashikumar Nair, Joshua S. Niedzielski, Ramon Maurilio Salazar, Ting Xu

Affiliation: The University of Texas MD Anderson Cancer Center, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center

Abstract Preview: Purpose: Radiation Pneumonitis (RP) predictive models often rely on clinical and DVH parameters, but multiomic features from CT imaging and 3D dose distributions from various regions could provide add...

Nomogram Based on Interpretable Multiregional Radiomics of Cone-Beam Breast CT and Clinicopathologic Features for Predicting FISH Status in HER2 2+ Breast Cancer to Differentiate HER2-Low from -Positive: A Multi-Center Study

Authors: Keyi Bian, Marco Caballo, Wenxiu Guo, Haijie Li, Jiao Li, Aidi Liu, Yue Ma, Ioannis Sechopoulos, Yafei Wang, Yaopan Wu, Zhaoxiang Ye, Yuwei Zhang, Yueqiang Zhu, Daan van den Oever

Affiliation: Radboud University Medical Center, Tianjin Medical University Cancer Institute & Hospital, Sun Yat-Sen University Cancer Center

Abstract Preview: Purpose: To develop and validate a nomogram integrating intra- and peritumoral radiomics of contrast-enhanced cone-beam breast CT (CE-CBBCT) and clinicopathologic features for predicting fluorescence ...

Non-Contact Blood Pressure Estimation Using Remote Photoplethysmography Signals Extracted from Facial Video: A Deep Learning Approach

Authors: Mavlonbek Khomidov, Jong-Ha Lee

Affiliation: Department of Biomedical Engineering, Keimyung University, Department of Computer Engineering, Keimyung University

Abstract Preview: Purpose: In this research, we aim to estimate blood pressure using remote photoplethysmography (rPPG) signal extracted from facial video. This method provides non-invasive and contactless, continuous ...

PET Imaging and Novel Cardiac Radiomics to Predict Pre-Radiotherapy Cardiac Conditions for Lung Cancer Patients Undergoing Radiotherapy.

Authors: Wookjin Choi, Michael Dichmann, Adam Dicker, Nilanjan Haldar, Yingcui Jia, Nicole L Simone, Eugene Storozynsky, Yevgeniy Vinogradskiy, Maria Werner-Wasik

Affiliation: Thomas Jefferson University, 9Department of Radiation Oncology, Thomas Jefferson University

Abstract Preview: Purpose: Cardiotoxicity remains a significant limitation for lung cancer patients treated with radiotherapy. Pre-radiotherapy cardiac conditions increase the probability of patients developing cardiot...

Predicting Hematologic Toxicity in Advanced Cervical Cancer Patients Using Interpretable Machine Learning Models Based on Radiomics and Dosimetrics

Authors: Qianxi Ni, Qionghui Zhou

Affiliation: The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University

Abstract Preview: Purpose:
This study aims to develop and evaluate interpretable machine learning models that use radiomic and dosimetric features to predict HT in advanced cervical cancer patients.
Methods:
R...

Predicting Hormone Receptor Status in Breast Cancer Using Mammographic and Sonographic Data and Machine Learning Models

Authors: Zahra Bagherpour, Manijeh Beigi, Pedram Fadavi, Faraz Kalantari, Moghadaseh Khaleghibizaki, Hengameh Nazari, Mojtaba Safari, Sepideh Soltani

Affiliation: Department of Radiation Oncology, School of Medicine, Iran University of Medical Sciences, Department of Radiation Oncology, School of Medicine, Emory University and Winship Cancer Institute, Department of Radiation Oncology, Iran University of Medical Sciences, University of Arkansas for medical sciences, Department of Radiation physics, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences

Abstract Preview: Purpose: This study aims to evaluate whether readily available mammographic and sonographic data, combined with machine learning (ML) models, can predict critical molecular factors (ER, PR, HER2) in b...

Prediction of Metastasis-Free Survival in Patients with Prostate Adenocarcinoma Using Primary Tumor and Lymph Node Radiomics from Pre-Treatment PSMA PET/CT Scans.

Authors: Ozan Cem Guler, William Silva Mendes, Sangbo Oh, Cem Onal, Lei Ren, Apurva Singh, Phuoc Tran

Affiliation: University of Maryland School of Medicine, Baskent University Faculty of Medicine, Department of Radiation Oncology, Department of Radiation Oncology, University of Maryland School of Medicine

Abstract Preview: Purpose: To predict metastasis-free survival (MFS) for patients with prostate adenocarcinoma treated with androgen deprivation therapy and external radiotherapy using clinical factors and radiomics ex...

Prediction of Vertebral Compression Fracture after Stereotactic Body Radiotherapy for Spinal Metastases Using Clinical, Radiomic and Dosiomic Features

Authors: Yukio Fujita, Syoma Ide, Kei Ito, Tomohiro Kajikawa, Satoshi Kito, Keiko Murofushi, Yujiro Nakajima, Yuhi Suda, Kentaro Taguchi, Naoki Tohyama, Fumiya Tsurumaki

Affiliation: Komazawa University Graduate School, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Department of Radiology, Kyoto Prefectural University of Medicine

Abstract Preview: Purpose: Stereotactic body radiotherapy (SBRT) for spine metastases is more effective for pain relief and local control than conventional radiotherapy. However, it is associated with vertebral compres...

Quantitative Fluorescence Imaging and Spatial Transcriptomics Reveal Compartment-Specific Immune Dynamics in HPV+ Oropharyngeal Cancer

Authors: Casey C. Heirman, Kyle J. Lafata, Xiang Li, Breylon Riley, Jack B Stevens, Tammara Watts

Affiliation: Duke University, Department of Radiation Oncology, Duke University

Abstract Preview: Purpose: To leverage quantitative fluorescence imaging and spatial transcriptomics for characterizing the spatial and molecular heterogeneity of the tumor microenvironment (TME) in HPV+ head and neck ...

Radiopathomic Characterization of Chemoradiation Resistance in Preclinical Models of Head and Neck Cancer

Authors: Rico Castillo, Katherine Gonzalez, Casey C. Heirman, Kyle J. Lafata, Xiang Li, Yvonne M Mowery, Yvonne M Mowery, Allison Pittman, Ashlyn G. Rickard, Breylon Riley

Affiliation: Duke University, Department of Radiation Oncology, Duke University, University of Pittsburgh

Abstract Preview: Purpose: To evaluate the relationships between quantitative imaging biomarkers and chemoradiation resistance in head and neck squamous cell carcinoma (HNSCC) using preclinical mouse models.

Met...

Spatial Dosimetric-Based Prediction of Long-Term Urinary Toxicity after Permanent Prostate Brachytherapy

Authors: Rajeev K. Badkul, Ronald C Chen, Ying Hou, Harold Li, Chaoqiong Ma, Jufri Setianegara

Affiliation: Department of Radiation Oncology, University of Kansas Medical Center

Abstract Preview: Purpose:
Postimplant urinary toxicity is common in prostate low-dose-rate (LDR) brachytherapy. We developed a machine learning (ML) model to explore the correlation between spatial dose distributio...

Toward Harmonized AI-Based Quantitative CT: A Voxel-Printed, Patient Specific Phantom for Cross-Platform Harmonization

Authors: Aditya P. Apte, Joseph O. Deasy, Yusuf Emre Erdi, Anqi Fu, Johannes Hertrich, Andrew Jackson, Usman Mahmood, Jason Ocana, Trahan Sean, Amita Shukla-Dave

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Automated AI-based quantitative CT tools hold immense promise for advancing clinical decision-making, yet their reproducibility and generalizability remain vulnerable to variability in imagin...

Two-Stage Clustering and Auto Machine Learning to Predict Chemoradiation Response in Tumor Subregions on FDG PET for La-NSCLC

Authors: Stephen R. Bowen, Shijun Chen, Chunyan Duan, Daniel S. Hippe, Qiantuo Liu, Qianqian Tong, Jiajie Wang, Shouyi Wang, Faisal Yaseen

Affiliation: The University of Texas at Austin, Tongji University, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Fred Hutchinson Cancer Center, University of Texas at Arlington

Abstract Preview: Purpose: Tumor subregion clustering and prediction of region-specific response can augment assessments and adaptive treatment decisions. A modeling framework was constructed to predict chemoradiation ...

Using Machine Learning to Predict Esophagitis Risk in Lung Cancer Radiotherapy Based on Clinical and Dosimetric Factors

Authors: Ibtisam Almajnooni, Siyong Kim, Nathaniel Miller, Elisabeth Weiss, Lulin Yuan

Affiliation: Virginia Commonwealth University

Abstract Preview: Purpose: Radiation-induced esophagitis (RE) is a common concern in lung cancer IMRT. Recent studies have indicated that the risk of radiation side effects varies greatly with patients’ baseline clinic...

Utilizing Multiple Modalities to Improve Models to Predict Changes in International Prostate Score for Prostate Cancer

Authors: Matthew C Abramowitz, Alan Dal Pra, Rodrigo Delgadillo, Nesrin Dogan, John C. Ford, Kyle R. Padgett, Levent Sensoy, Benjamin Spieler, Matthew T. Studenski, Jace Allen Walker

Affiliation: University of Miami, Department of Radiation Oncology, University of Miami, University of Miami Sylvester Comprehensive Cancer Center, University of Miami School of Medicine

Abstract Preview: Purpose:
Toxicities that affect a patient’s quality-of-life due to prostate cancer (pCa) radiation therapy (RT) are receiving more attention as RT has become increasingly successful in treating pCA...

Weak-to-Strong Generalization for Interpretable Deep Learning-Based Histological Image Classification Guided By Hand-Crafted Features

Authors: Mark Anastasio, Zong Fan, Hua Li, Changjie Lu, Lulu Sun, Xiaowei Wang, Zhimin Wang, Michael Wu

Affiliation: University of Illinois at Urbana-Champaign, University of Illinois at Chicago, Washington University School of Medicine, University of Illinois Urbana-Champaign, Washington University in St. Louis, University Laboratory High School

Abstract Preview: Purpose: Histological whole slide images (WSIs) are vital in clinical diagnosis. Although deep learning (DL) methods have achieved great success in this task, they often lack interpretability. Traditi...