Search Submissions πŸ”Ž

Results for "framework generating": 22 found

A Causal Machine Learning Analysis of Dosimetric and Clinical Predictors of Osteoradionecrosis in Head and Neck Cancer Radiotherapy

Authors: Jingyuan Chen, Sheng Li, Tianming Liu, Wei Liu, Zhengliang Liu, Zhong Liu, Daniel Ma, Samir H. Patel, Guangya Wang, Yunze Yang

Affiliation: University of Miami, Mayo Clinic, School of Data Science, University of Virginia, School of Computing, University of Georgia, Department of Radiation Oncology, Mayo Clinic, Institute of Western China Economic Research, Southwestern University of Finance and Economics

Abstract Preview: Purpose:
Traditional patient outcome analyses relied heavily on conventional statistical models that primarily elucidate correlation rather than causal relationships. In this study, we aim to ident...

A Comprehensive TG 263 Toolkit for Generating, Validating, and Parsing Radiation Therapy Target Names

Authors: Rex A. Cardan, Richard A. Popple

Affiliation: University of Alabama at Birmingham

Abstract Preview: Purpose:
Compliance with TG 263 naming conventions for target structures in radiation oncology remains a challenging task due to the complexity and variability of the protocol. Traditional validati...

A Vqvae-Based Framework with Embedded Kullback-Leibler Divergence for Stochastic and Diverse Dose Prediction

Authors: Weigang Hu

Affiliation: Fudan University Shanghai Cancer Center

Abstract Preview: Purpose: The purpose of this study is to introduce a VQVAE-based framework that addresses the limitations of conventional dose prediction methods, which rely on fixed deep learning models that produce...

Addressing Missing MRI Sequences: A DL-Based Region-Focused Multi-Sequence Framework for Synthetic Image Generation

Authors: Amir Abdollahi, Oliver JΓ€kel, Maxmillian Knoll, Rakshana Murugan, Adithya Raman, Patrick Salome

Affiliation: UKHD & DKFZ, Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), German Cancer Research Centre(DKFZ), DKFZ, MGH

Abstract Preview: Purpose:
Missing MRI sequences, due to technical issues in data handling or clinical constraints like contrast agent intolerance, limit the use of medical imaging datasets in computational analysis...

Biologically Guided Deep Learning for MRI-Based Brain Metastasis Outcome Prediction after Stereotactic Radiosurgery

Authors: Evan Calabrese, Hangjie Ji, Kyle J. Lafata, Casey Y. Lee, Eugene Vaios, Chunhao Wang, Lana Wang, Zhenyu Yang, Jingtong Zhao

Affiliation: Duke University, Department of Radiation Oncology, Duke University, Duke Kunshan University, North Carolina State University

Abstract Preview: Purpose: To develop a biologically guided deep learning (DL) model for predicting brain metastasis(BM) local control outcomes following stereotactic radiosurgery (SRS). By integrating pre-SRS MR image...

Combining Proton Flash and Spatially Fractionated Radiotherapy – Experimental and Simulation Based Dosimetric Characterization

Authors: Gulakhshan M Hamad, Sina Mossahebi, Yannick P. Poirier, Amit Sawant

Affiliation: University of Maryland School of Medicine, Maryland University Baltimore

Abstract Preview: Purpose:
The combination of ultra-high dose rate (UHDR) proton therapy, known for normal tissue sparing, with spatially-fractionated radiotherapy (SFRT), promising enhanced tumor control and tissue...

Deep Learning-Based Prompt Gamma Imaging for Proton Range Verification Using Patient Data Simulation

Authors: Mostafa Cham, Matthias K Gobbert, Zhuoran Jiang, Sina Mossahebi, Ruth Obe, Stephen W. Peterson, Jerimy C. Polf, Lei Ren, Ehsan Shakeri, Vijay Raj Sharma

Affiliation: University of Maryland School of Medicine, UMBC, University of Maryland Baltimore County, University of Maryland, Baltimore County, Stanford University, University of Maryland, School of Medine, Department of Physics, University of Cape Town, M3D, Inc, Department of Infomation Systems, UMBC

Abstract Preview: Purpose: Compton camera (CC)-based prompt gamma imaging (PGI) offers real-time proton range verification. However, its limited-angle measurements cause severe distortions in PGI, affecting its clinica...

Development of an Inverse Treatment Planning System for Precision Small Animal Radiotherapy

Authors: Zihao Liu, Qiwei Wu, Yanfei Xiong, Yidong Yang, Ning Zhao

Affiliation: Department of Engineering and Applied Physics, School of Physical Sciences, University of Science and Technology of China, Department of Engineering and Applied Physics, University of Science and Technology of China, University of Science and Technology of China

Abstract Preview: Purpose: To develop an inverse planning framework that optimizes beam angles and intensities for small animal radiotherapy and to validate its accuracy and effectiveness.
Methods: The inverse plann...

Evaluating the Impact of Contour Variability on the Effectiveness of Deep Learning Features in Head and Neck Imaging

Authors: Hania A. Al-Hallaq, Xuxin Chen, Anees H. Dhabaan, Elahheh (Ella) Salari, Xiaofeng Yang

Affiliation: Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose:
Radiomics image analysis could lead to the development of predictive signatures and personalized radiotherapy treatments. However, variations in delineation are known to affect hand-crafte...

Fully Automatic Pipelines for Anatomical ROI Detection and Exposure Index Calculation in X-Ray Imaging : Foundation Model-Based Frameworks for Dose Standardization

Authors: Yoonha Eo

Affiliation: Yonsei University

Abstract Preview: Purpose: To develop a fully automatic and unsupervised algorithm for estimating the Exposure Index (EI) of various Regions of Interest in X-ray imaging using advanced foundation models. Traditional EI...

Generation of Patient-Specific Phantom for Head & Neck Proton Therapy Based on Xcat

Authors: Cheng-En Hsieh, Shen-Hao Li, Hsin-Hon Lin, Shu-Wei Wu, An-Ci Yang

Affiliation: Department of Medical Imaging and Radiological Sciences, Chang Gung University, Proton and Radiation Therapy Center, Chang Gung Memorial Hospital, Proton and Radiation Therapy Center, Chang Gung Memorial Hospital Linkou

Abstract Preview: Purpose:
The aim of this study is to develop a framework of generating patient-specific phantom tailored for head and neck proton therapy. From these phantoms, digital reference objects based on th...

High-Fidelity Synthetic CT Generation from CBCT for Dibh Breast Cancer Patients Using Shortest Path Regularization

Authors: Manju Liu, Weiwei Sang, Yanyan Shi, Zhenyu Yang, Fang-Fang Yin, Chulong Zhang, Lihua Zhang, Rihui Zhang

Affiliation: Jiahui International Hospital, Jiahui International Hospital, Radiation Oncology, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: This study aims to transform cone-beam computed tomography (CBCT) images acquired from deep inspiration breath-hold (DIBH) breast cancer patients into high-fidelity synthetic CT (sCT) images....

Investigation of the Diagnostic Quality of Chest X-Rays Simulated from CT

Authors: Matthew R. Hoerner, Allison Shields

Affiliation: Yale University School of Medicine, Yale University

Abstract Preview: Purpose: To investigate the quality and clinical utility of chest x-rays synthesized from CT scans (sCXR).
Methods: Five helical chest CT exams were chosen for evaluation: this cohort represented a...

Mask-Based Synthetic Contrast-Enhanced CT Generation for Advancing Data Limited Segmentation on Cardiac Substructure

Authors: Jin Sung Kim, Chanwoong Lee, Young Hun Yoon

Affiliation: Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine

Abstract Preview: Purpose: Chest contrast-enhanced CT (CECT) serves as a valuable tool for cardiac imaging, but its lack of detailed anatomical visualization limits its utility in segmentation tasks. While CECT offers ...

Multi-Organ Segmentation of Pelvic Cone-Beam Computed Tomography (CBCT) with Transformer Models to Enhance Adaptive Radiotherapy for Prostate Cancer

Authors: Ming Chao, Thomas Chum, Tenzin Kunkyab, Yang Lei, Tian Liu, Richard G Stock, Hasan Wazir, Junyi Xia, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai

Abstract Preview: Purpose:
This study aims to develop effective strategies for multi-organ segmentation of pelvic cone-beam computed tomography (CBCT) images based on transformer models to facilitate adaptive radiat...

Posterior-Mean Diffusion Model for Realistic PET Image Reconstruction

Authors: Osama R. Mawlawi, Yiran Sun

Affiliation: RICE University, UT MD Anderson Cancer Center

Abstract Preview: Purpose: Conventional PET reconstruction methods often produce noisy images with artifacts due to data/model mismatches and inconsistencies. Recently, deep learning-based conditional denoising diffusi...

Prior-Adapted Progressive Motion-Resolved CBCT Reconstruction Using a Dynamic Reconstruction and Motion Estimation Method

Authors: Hua-Chieh Shao, You Zhang, Ruizhi Zuo

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Cone-beam CT (CBCT) provides on-board patient anatomy for image guidance and treatment adaptation in radiotherapy. However, to compensate for respiration-induced anatomical motion, motion-res...

Simultaneous Synthesis of Lung Perfusion and Ventilation Images from CT Using a Dual-Decoder Residual Attention Network for Lung Disease Diagnosis

Authors: Li-Sheng Geng, David Huang, Haoze Li, Xi Liu, Meng Wang, Tianyu Xiong, Ruijie Yang, Weifang Zhang, Meixin Zhao

Affiliation: School of Physics, Beihang University, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Department of Radiation Oncology, Peking University Third Hospital, Department of Nuclear Medicine, Peking University Third Hospital, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: This study aimed to develop a deep learning-based framework for simultaneously generating lung perfusion and ventilation images from three-dimensional computed tomography (3D CT) images.
M...

Streamlining Hippocampal-Sparing Whole-Brain VMAT Planning: Enhancing Efficiency and Plan Quality with an Automated Workflow

Authors: Eric C. Ford, Yulun He, Minsun Kim, Dustin Melancon, Juergen Meyer, Dong Joo Rhee, Yinghua Tao

Affiliation: Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, MD Anderson Cancer Center, University of Washington

Abstract Preview: Purpose: To develop and evaluate an automated-planning technique capable of generating high-quality treatment plans for hippocampal-sparing-whole-brain radiation therapy.
Methods: An auto-planning ...

Structure-Based Diffusion Model for CT Synthesis from MR Images for Radiotherapy Treatment Planning

Authors: Samuel Kadoury, Redha Touati

Affiliation: Polytechnique MontrΓ©al

Abstract Preview: Purpose:
Generating synthetic CT images from MR acquisitions for radiotherapy planning allows to integrate soft tissue contrast alongside density information stemming from CT, thus improving tumor ...

Synthetic CT Generation from a Cycle Diffusion Model Based Framework for Ultrasound-Based Prostate HDR Brachytherapy

Authors: Michael Baine, Charles Enke, Yang Lei, Yu Lei, Ruirui Liu, Su-Min Zhou

Affiliation: Icahn School of Medicine at Mount Sinai, University of Nebraska Medical Center, Department of Radiation Oncology, University of Nebraska Medical Center

Abstract Preview: Purpose: This study presents a framework for generating synthetic CT images using a Cycle Diffusion model, which can be utilized to enhance needle conspicuity in ultrasound-guided prostate HDR brachyt...

Text-Conditioned Latent Diffusion Model for Synthesis of Contrast-Enhanced CT from Non-Contrast CT

Authors: Yizheng Chen, Michael Gensheimer, Mingjie Li, Lei Xing

Affiliation: Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose: Automatically translating non-contrast to contrast-enhanced computed tomography (CT) images is critical for improving clinical workflow, reducing heathcare cost, minimizing radiation exposure...