Search Submissions πŸ”Ž

Results for "institutional dataset": 17 found

A Method to Expedite Quality Assurance for Head and Neck Ctvs with Lymph Node Level Auto-Autocontouring and Identification

Authors: Beth M. Beadle, Adrian Celaya, Laurence Edward Court, David Fuentes, Anna Lee, Tze Yee Lim, Dragan Mirkovic, Amy Moreno, Raymond Mumme, Tucker J. Netherton, Callistus M. Nguyen, Jaganathan A Parameshwaran, Jack Phan, Carlos Sjogreen, Sara L. Thrower, Congjun Wang, He C. Wang, Xin Wang

Affiliation: Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Department of Radiation Oncology, Stanford University, The University of Texas MD Anderson Cancer Center, MD Anderson Cancer Center, MD Anderson, Rice University, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center

Abstract Preview: Purpose: Quality assurance of target volumes from radiotherapy clinical trials is a labor and resource intensive task. The purpose of this work is to quantify the accuracy of a tool that automatically...

An Automated Tool for the Categorization of a Clinical Database By Anatomic Region for Big Data Applications

Authors: Yasin Abdulkadir, Justin Hink, James M. Lamb, Jack Neylon

Affiliation: Department of Radiation Oncology, University of California, Los Angeles

Abstract Preview: Purpose: Curation remains a significant barrier to the use of β€˜big data’ radiotherapy planning databases of 100,000 patients or more. Anatomic site of treatment is an important stratification for almo...

Benchmarking Patient Doses for Barium Fluoroscopy Procedures: A Single-Institution Study

Authors: Wilfred R Furtado, Gary Y. Ge, Jie Zhang

Affiliation: Department of Radiology, University of Kentucky, University of Kentucky

Abstract Preview: Purpose: The United Kingdom and several other countries already have well-established diagnostic reference levels (DRLs) for gastrointestinal fluoroscopic procedures, whereas the United States does no...

Development and Validation of a Scalable Radiomics Pipeline for Lung Cancer Research Using Clinical and Public Datasets

Authors: Pradeep Bhetwal, Yingxuan Chen, Wookjin Choi, Michael Dichmann, Adam Dicker, Rupesh Ghimire, Yevgeniy Vinogradskiy, Maria Werner-Wasik

Affiliation: Thomas Jefferson University

Abstract Preview: Purpose: Radiomics has emerged as a powerful tool in medical research. However, the lack of standardized and reproducible pipelines limits its clinical adoption. This study developed a robust and scal...

Enhanced Prediction of Iroc Stereotactic Radiosurgery Phantom Audit Results with Treatment Parameters, Complexity Metrics, DVH, and Dosiomics Using Machine Learning

Authors: Lian Duan, Stephen F. Kry, Hunter S. Mehrens, Christine Peterson, Paige A. Taylor

Affiliation: The University of Texas MD Anderson Cancer Center, UT MD Anderson Cancer Center

Abstract Preview: Purpose: To develop predictive models for IROC SRS head phantom audits and to identify important factors influencing institutional performance.
Methods: The IROC SRS head phantom includes two TLDs ...

Foundation Models with Balanced Data Sampling Enhance Auto-Segmentation for Cardiac Substructures

Authors: Chloe Min Seo Choi, Nikhil Mankuzhy, Aneesh Rangnekar, Andreas Rimner, Maria Thor, Harini Veeraraghavan, Abraham Wu

Affiliation: Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Cardiac substructure irradiation predisposes patients for poor outcomes in thoracic radiation therapy. A deep learning model was developed to segment the cardiac substructures invariant to co...

Fully Automated Review of Prostate Radiotherapy Treatment Plan Quality

Authors: Yasin Abdulkadir, John Charters, Melissa Ghafarian, James M. Lamb, Dishane Chand Luximon, Jack Neylon

Affiliation: Department of Radiation Oncology, University of California, Los Angeles

Abstract Preview: Purpose:
Assessment of radiotherapy treatment quality in large-scale multi-institutional contexts remains an outstanding challenge. Retrospective human review of treatment plans is labor intensive ...

Generalizable 7T T1 Map Synthesis from 1.5T and 3T T1W MRI for High-Resolution MRI-Guided Radiation Therapy

Authors: Zachary Buchwald, Chih-Wei Chang, Zach Eidex, Hui Mao, Richard L.J. Qiu, Justin R. Roper, Mojtaba Safari, Hui-Kuo Shu, Xiaofeng Yang, David Yu

Affiliation: Emory University and Winship Cancer Institute, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University, Emory University School of Medicine

Abstract Preview: Purpose: MRI-guided radiation therapy (MRgRT) benefits significantly from enhanced soft-tissue contrast and spatial resolution, which aid in accurately delineating tumors and organs at risk. Although ...

Image Quality-Based Clinical CT Cohort Selection from Midrc Using a Multi-Institutional Phantom Dataset

Authors: John M. Boone, Andrew M. Hernandez, Paul E. Kinahan, Michael F. McNitt-Gray, Jeffrey H. Siewerdsen, Ali Uneri

Affiliation: University of California, Johns Hopkins Univ, UT MD Anderson Cancer Center, David Geffen School of Medicine at UCLA, University of Washington, UC Davis Health

Abstract Preview: Purpose: Measuring image quality (IQ) in large clinical databases, such as the Medical Imaging and Data Resource Center (MIDRC), is challenging due to the inherent complexity of image content and the ...

Implementing a Knowledge-Based Planning Model for Gastrointestinal (GI) Site-Specific Plans for Photon Radiation Therapy

Authors: Andreea Dimofte, Maksym Sharma, Weibing Yang, Timothy C. Zhu

Affiliation: Department of Radiation Oncology, University of Pennsylvania, University of Pennsylvania

Abstract Preview: Purpose:
To assess the effectiveness and dosimetric impact of utilizing a knowledge-based planning model for GI site-specific plans.
Methods:
Six knowledge-based planning models were develope...

LLM-Enhanced Multi-Modal Framework for Predicting Pain Relief of Stereotactic Body Radiotherapy for Spine Metastases Using Clinical Factors and Imaging Reports

Authors: John Byun, Steven D Chang, Mingli Chen, Cynthia Chuang, Xuejun Gu, Melanie Hayden Gephart, Yusuke Hori, Hao Jiang, Mahdieh Kazemimoghadam, Fred Lam, Gordon Li, Lianli Liu, Weiguo Lu, David Park, Erqi Pollom, Elham Rahimy, Deyaaldeen Abu Reesh, Scott Soltys, Gregory Szalkowski, Lei Wang, Qingying Wang, Zi Yang, Xianghua Ye, Kangning Zhang

Affiliation: Department of Radiation Oncology, Stanford University, Department of Neurosurgery, Stanford University, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose: Accurate prediction of pain relief is crucial in determining the clinical effectiveness of Stereotactic body radiotherapy (SBRT) regimen for spine metastases. We propose a deep-learning frame...

Multi-Center Evaluation of an AI Beam Angle Prediction Model for Liver Treatments Using Pencil Beam Scanning Proton Therapy

Authors: Christopher Ackerman, Chang Chang, Yan-Cheng Huang, Robert Kaderka, Che Lin, Hsin-Chih Lo, Iain MacEwan, Yi-Chin Tu, James Urbanic

Affiliation: University of California San DIego, Taiwan AI Labs, National Taiwan University, California Protons Cancer Therapy Center, University of Miami, Sylvester Comprehensive Cancer Center

Abstract Preview: Purpose: To investigate the performance of an existing AI beam angle prediction model on external patient datasets for liver proton treatments. The AI model was trained on datasets exclusively from on...

Patient-Specific Deep Reinforcement Learning Framework for Automatic Replanning in Proton Therapy for Head-and-Neck Cancer

Authors: Malvern Madondo, Mark McDonald, Zhen Tian, Christopher Valdes, Ralph Weichselbaum, Xiaofeng Yang, David Yu, Jun Zhou

Affiliation: Department of Radiation & Cellular Oncology, University of Chicago, University of Chicago, Emory University, Department of Radiology, University of Chicago, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Head-and-neck (HN) cancer patients often experience significant anatomical changes during treatment course. Proton therapy, particularly intensity-modulated proton therapy (IMPT), is sensitiv...

Personalized and Automated Head & Neck Radiotherapy Planning with AI-Guided Optimization

Authors: Michael Bowers, Patrik Brodin, Madhur Garg, Rafi Kabarriti, William P. Martin, Todd R. McNutt, Julie Shade, Wolfgang A. TomΓ©, Christian Velten

Affiliation: Johns Hopkins University, Oncospace, Inc., Montefiore Medical Center

Abstract Preview: Purpose: Development of an automated planning tool utilizing AI generated patient-specific dose-volume histogram predictions for rapid H&N plan generation.
Methods: Planning best-practices were dev...

Tailor-TS System: Tailored Tumor Segmentation System with Facility-Specific Semi-Supervised Learning

Authors: Gong Vincent Hao, Daisuke Kawahara, Jokichi Kawazoe, Yuji Murakami, Ikuno Nishibuchi, Peiying Colleen Ruan, Daguang Xu, Dong Yang

Affiliation: Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima University, NVIDIA

Abstract Preview: Purpose:
Accurate tumor segmentation in head and neck cancer is critical for effective treatment planning, but variability in practices across medical facilities poses challenges for standardizatio...

Unidose: A Universal Framework for IMRT Dose Prediction

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Zi Yang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose: Dose prediction (DP) is essential in guiding radiotherapy planning. However, current DP models for intensity-modulated radiation therapy (IMRT) primarily rely on fixed-beam orientations and a...

Using Open-Source Reasoning Large Language Models for Radiotherapy Structure Name Harmonization

Authors: Claus Belka, Stefanie Corradini, Christopher Kurz, Guillaume Landry, Matteo Maspero, Adrian Thummerer, Erik van der Bijl

Affiliation: Department of Radiation Oncology, LMU University Hospital, LMU Munich, Radboud University Medical Center, UMC Utrecht

Abstract Preview: Purpose: To automatically harmonize non-standardized organ-at-risk (OAR) structure names from multi-lingual, multi-institutional radiotherapy datasets using state-of-the-art open-source reasoning larg...