Search Submissions ๐Ÿ”Ž

Results for "learning adaptive": 47 found

A Comparison of Non-Adaptive Versus Online Adaptive Radiotherapy for Prostate Cancer Using FLOW-RT-- Fast, AI-Driven but Learning-Enabled, Online Adaptive Workflow for Radiotherapy

Authors: Theodore Higgins Arsenault, Kenneth W. Gregg, Beatriz Guevara, Lauren E Henke, Angela Jia, Rojano Kashani, Kyle O'Carroll, Alex T. Price, Adithya Reddy, Atefeh Rezaei, Daniel E Spratt, Runyon C. Woods

Affiliation: University Hospitals Seidman Cancer Center

Abstract Preview: Purpose: To evaluate the effect of unedited AI-generated contours used for online adaptive radiotherapy (FLOW-ART) on the plan quality of prostate treatments as compared to non-adaptive (non-ART) proc...

A Deep Learning Approach to the Prediction of Gamma Passing Rates in VMAT Radiotherapy Plans for Adaptive Treatment.

Authors: Jenghwa Chang, Kuan Huang, Lyu Huang, Jason Lima, Jian Liu, Farzin Motamedi

Affiliation: Northwell, Department of Computer Science and Technology, Kean University, Physics and Astronomy, Hofstra University, Hofstra University Medical Physics Program

Abstract Preview: Title: A Deep Learning Approach to the Prediction of Gamma Passing Rates in VMAT Radiotherapy Plans for Adaptive Treatment.
Purpose: This study aims to develop a deep learning algorithm to predict ...

A Deep Learning-Based Approach for Rapid Prediction of IMRT/VMAT Patient-Specific Quality Assurance for Online Adaptive Plans Generated with a 0.35T MR-Linac

Authors: Suman Gautam, Tianjun Ma, William Song

Affiliation: Virginia Commonwealth University

Abstract Preview: Purpose: We propose an artificial intelligence (AI)-based method to rapidly predict the patient-speci๏ฌc quality assurance (PSQA) results for magnetic resonance (MR)-guided online adaptive radiation th...

A Dual Energy CT-Guided Intelligent Radiation Therapy Platform

Authors: Jiayi Chen, Manju Liu, Ning Wen, Haoran Zhang, Yibin Zhang

Affiliation: Department of Radiation Oncology, Ruijin Hospital, Department of Radiology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Duke Kunshan University, Department of Radiation Oncology,Ruijin Hospital, Shanghai Jiao Tong University School of Medicine

Abstract Preview: Purpose: This study introduces a novel Dual Energy CT (DECT)-Guided Intelligent Radiation Therapy (DEIT) platform designed to streamline and optimize the radiotherapy process. The DEIT system combines...

A Dynamic Reconstruction and Motion Estimation Framework for Cardiorespiratory Motion-Resolved Real-Time Volumetric MR Imaging (DREME-MR)

Authors: Jie Deng, Xiaoxue Qian, Hua-Chieh Shao, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Based on a 3D pre-treatment MRI scan, we developed DREME-MR to jointly reconstruct the reference patient anatomy and a data-driven, patient-specific cardiorespiratory motion model. Via a moti...

A Multi-Criteria Optimization Method Based on Reinforcement Learning and Adaptive Boosting in Radiation Therapy

Authors: Liqin HU, Tao He, Jing JIA, Pengcheng LONG, Wei Meng, Yang Yuan

Affiliation: SuperAccuracy Science & Technology Co. Ltd.

Abstract Preview: Purpose: A multi-criteria optimization method based on reinforcement learning and adaptive boosting(RLAB MCO) has been developed to enhance radiotherapy plan quality by offering reasonable and effecti...

A Novel Non-Measured and DVH-Based IMRT QA Framework with Machine Learning for Instant Classification of Susceptible Lung SBRT VMAT Plans

Authors: Chuan He, Anh H. Le, Iris Z. Wang

Affiliation: Roswell Park Comprehensive Cancer Center, Cedars-Sinai

Abstract Preview: Purpose: To develop a non-measured and DVH-based (NMDB) IMRT QA framework integrating machine learning (ML) to classify lung SBRT VMAT plans prone to delivery errors
Methods: 560 Eclipse AcurosXB l...

AI-Based Registration-Free 3T T2-Weighted MRI Synthesis Using Truefisp MRI Acquired on a 0.35T MR-Linac System

Authors: Hilary P Bagshaw, Mark K Buyyounouski, Cynthia Fu-Yu Chuang, Yu Gao, Dimitre Hristov, Lianli Liu, Lawrie Skinner, Lei Xing

Affiliation: Department of Radiation Oncology, Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose:
MR-guided radiation therapy has introduced a significant leap in cancer treatment by allowing adaptive treatment. The low-field MR-guided system predominantly uses the TrueFISP sequence, w...

Advancing Ionizing Radiation Acoustic Imaging: A Deep Learning Approach for Denoising and Quantitative Reconstruction

Authors: Kyle Cuneo, Issam M. El Naqa, Dale W. Litzenberg, Yiming Liu, Xueding Wang, Lise Wei, Wei Zhang, Jiaren Zou

Affiliation: University of Michigan, H. Lee Moffitt Cancer Center

Abstract Preview: Purpose: To quantitatively map 3D dose deposition during radiotherapy, empowering real-time adaptive radiation treatment.

Methods: The research features reconstructing dose deposition from acou...

Advancing Thoracic Synthetic CT Images with Enhanced Cyclegan for Adaptive Radiotherapy Applications

Authors: Silambarasan Anbumani, Nicolette O'Connell, Eenas A. Omari, Amanda Pan, Eric S. Paulson, Lindsay Puckett, Monica E. Shukla, Dan Thill, Jiaofeng Xu

Affiliation: Elekta Inc, Elekta Limited, Linac House, Department of Radiation Oncology, Medical College of Wisconsin

Abstract Preview: Purpose: Accurate electron density information from on-board imaging is essential for direct dose calculations in adaptive radiotherapy (ART). This study evaluates a deep learning model for thoracic s...

Assessment of Deep Learning Models for 3D Dose Prediction in Prostate Cancer SIB-IMRT Using MR-Linac

Authors: Hao-Wen Cheng, Jonathan G. Li, Chihray Liu, Wen-Chih Tseng, Guanghua Yan

Affiliation: University of Florida

Abstract Preview: Purpose: This study develops and evaluates deep learning (DL) models for predicting 3D dose distributions in simultaneous integrated boost (SIB) prostate cancer treatment using the Elekta Unity MR-Lin...

Automated Decision Workflow Using Fast Monte Carlo Dose Calculations for Daily Adaptive Proton Therapy

Authors: Ergun E. Ahunbay, Abdul Parchur, Eric S. Paulson, Ilaria Rinaldi, Angelo Schiavi, Li Zhao

Affiliation: Sapienza University of Rome, Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Department of Radiation Oncology, Medical College of Wisconsin

Abstract Preview: Purpose: Online adaptive replanning is often necessary in Intensity Modulated Proton Therapy (IMPT) due to the sensitivity of proton dose distributions to daily anatomical changes. A rapid, automated ...

Automatic Specific Absorption Rate (SAR) Prediction for Hyperthermia Treatment Planning (HTP) Using Deep Learning Method

Authors: Yankun Lang, Lei Ren, Dario B. Rodrigues

Affiliation: University of Maryland School of Medicine, Department of Radiation Oncology, University of Maryland School of Medicine

Abstract Preview: Purpose:
HTP of microwave (MW) phased-array systems determine MW antenna settings to maximize energy absorption (SAR in W/kg) in tumor. Conventional HTP algorithms calculate SAR based on electromag...

Biologically Guided Deep Learning for MRI-Based Brain Metastasis Outcome Prediction after Stereotactic Radiosurgery

Authors: Evan Calabrese, Hangjie Ji, Kyle J. Lafata, Casey Y. Lee, Eugene Vaios, Chunhao Wang, Lana Wang, Zhenyu Yang, Jingtong Zhao

Affiliation: Duke University, Department of Radiation Oncology, Duke University, Duke Kunshan University, North Carolina State University

Abstract Preview: Purpose: To develop a biologically guided deep learning (DL) model for predicting brain metastasis(BM) local control outcomes following stereotactic radiosurgery (SRS). By integrating pre-SRS MR image...

Commission and Clinical Implementation of the 1st Step-and-Shoot Proton Arc Therapy for Head and Neck Cancer Patient Treatment

Authors: Xiaoda Cong, Rohan Deraniyagala, Xuanfeng Ding, Xiaoqiang Li, Jian Liang, Peilin Liu, Craig Stevens, Xiangkun Xu, Weili Zheng

Affiliation: Corewell Health William Beaumont University Hospital, Corewellhealth William Beaumont University Hospital, William Beaumont University Hospital, Corewellhealth William Beaumont Hospital, Department of Radiation Oncology, Corewell Health William Beaumont University Hospital

Abstract Preview: Purpose:
Commission a step-and-shoot arc therapy(SPArc-step&shoot) for treating head-neck cancer patients as a desired interim milestone toward full dynamic treatment.
Methods:
An in-house de...

Deep Learning Aided Oropharyngeal Cancer Autoplanning

Authors: Mark Bowers, Gabriel Carrizo, Jimmy Caudell, Vladimir Feygelman, Kevin Greco, Christian Hahn, Jihye Koo, Kujtim Latifi, Fredrik Lofman, Jacopo Parvizi, Muqeem Qayyum, Caleb Sawyer

Affiliation: RaySearch Laboratories, Moffitt Cancer Center

Abstract Preview: Purpose: Head and neck (H&N) radiotherapy planning is complex, with multiple competing objectives. We endeavored to improve efficiency of planning by developing a deep learning (DL) model trained to p...

Deep Learning-Driven Comparative Analysis of CNN-Based Architectures and High-Order Vision Mamba U-Net (H-vMUNet) for MRI-Based Brain Tumor Segmentation

Authors: Sang Hee Ahn, Nalee Kim, Do Hoon Lim

Affiliation: Samsung Medical Center, Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine

Abstract Preview: Purpose: MRI offers superior soft-tissue contrast, aiding tumor localization and segmentation in radiation therapy, which traditionally relies on oncologists' expertise. This study compares CNN-based ...

Detector Physics-Incorporated Diffusion Denoising Models for Digital Breast Tomosynthesis with Dual-Layer Flat Panel Detectors

Authors: Alexander Bookbinder, Matthew Tivnan, Xiangyi Wu, Wei Zhao

Affiliation: Stony Brook Medicine, Massachusetts General Hospital

Abstract Preview: Purpose: To investigate and benchmark a system-adaptive diffusion-based digital breast tomosynthesis (DBT) denoising model for a direct-indirect dual-layer flat panel detector (DI-DLFPD) with a k-edge...

Development of an Orthogonal X-Ray Projections-Guided Cascading Volumetric Reconstruction and Tumor-Tracking Model for Adaptive Radiotherapy

Authors: Penghao Gao, Zejun Jiang, Huazhong Shu, Linlin Wang, Gongsen Zhang, Jian Zhu

Affiliation: Laboratory of Image Science and Technology, Key Laboratory of Computer Network and Information Integration, Southeast University, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Artificial Intelligence Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences

Abstract Preview: Purpose: We propose a cascading framework for time-varying anatomical volumetric reconstruction and tumor-tracking, guided by onboard orthogonal-view X-ray projections.
Methods: We employe multiple...

Evaluating Deep Learning Models for Accurate Segmentation of GTV and Oars in MR-Guided Adaptive Radiotherapy for Pancreatic Cancer

Authors: Christopher G. Ainsley, Pradeep Bhetwal, Yingxuan Chen, Wookjin Choi, Vimal K. Desai, Karen E. Mooney, Adam Mueller, Hamidreza Nourzadeh, Yevgeniy Vinogradskiy, Maria Werner-Wasik

Affiliation: Thomas Jefferson University

Abstract Preview: Purpose: MR-guided adaptive radiotherapy (MRgART) has demonstrated improved outcomes for patients with pancreatic cancer. However, the time-consuming re-segmentation of targets and organs-at-risk (OAR...

Evaluating Necessity of Patient-Specific Deep Learning-Based Auto-Segmentation for Improved Adaptation for Abdominal Tumors

Authors: Asma Amjad, Renae Conlin, Eric S. Paulson, Christina M. Sarosiek

Affiliation: Department of Radiation Oncology, Medical College of Wisconsin

Abstract Preview: Purpose: In an effort to improve contouring accuracy for abdominal MR guided online adaptive radiotherapy (MRgOART), patient-specific deep learning-based auto-segmentation (PS-DLAS) has been proposed....

Fast Synthetic-CT-Free Dose Calculation in MR Guided RT

Authors: Claus Belka, Stefanie Corradini, George Dedes, Nikolaos Delopoulos, Christopher Kurz, Guillaume Landry, Ahmad Neishabouri, Domagoj Radonic, Adrian Thummerer, Niklas Wahl, Fan Xiao

Affiliation: Department of Radiation Oncology, LMU University Hospital, LMU Munich, Department of Medical Physics, LMU Munich, Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO)

Abstract Preview: Purpose: In MR-guided online adaptive radiotherapy, MRI lacks tissue attenuation information necessary for accurate dose calculations. Instead of using deep learning methods to generate synthetic CT i...

From Noisy Signals to Accurate Maps: Transforming Look-Locker MRI with an Intelligent Tโ‚ Estimation

Authors: Prabhu C. Acharya, Hassan Bagher-Ebadian, Stephen L. Brown, James R. Ewing, Mohammad M. Ghassemi, Benjamin Movsas, Farzan Siddiqui, Kundan S Thind

Affiliation: Michigan State University, Oakland University, Henry Ford Health

Abstract Preview: Purpose: Accurate T1 quantification using T One by Multiple Read Out Pulse (TOMROP) sequences is essential for physiological assessments in dynamic-contrast-enhanced (DCE) MRI and T1 mapping studies. ...

Generalizable 7T T1 Map Synthesis from 1.5T and 3T T1W MRI for High-Resolution MRI-Guided Radiation Therapy

Authors: Zachary Buchwald, Chih-Wei Chang, Zach Eidex, Hui Mao, Richard L.J. Qiu, Justin R. Roper, Mojtaba Safari, Hui-Kuo Shu, Xiaofeng Yang, David Yu

Affiliation: Emory University and Winship Cancer Institute, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University, Emory University School of Medicine

Abstract Preview: Purpose: MRI-guided radiation therapy (MRgRT) benefits significantly from enhanced soft-tissue contrast and spatial resolution, which aid in accurately delineating tumors and organs at risk. Although ...

Graph Neural Network with Long Short-Term Memory for CT-Based Macrotrabecular-Massive Hepatocellular Carcinoma Diagnosis

Authors: Enhui Chang, Yunfei Dong, Yifei Hao, Chengliang Jin, Shengsheng Lai, Yi Long, Mengni Wu, Yulu Wu, Ruimeng Yang, Zhenyu Yang, Yue Yuan, Lei Zhang, Wanli Zhang, Yaogong Zhang

Affiliation: Duke Kunshan University, Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Macrotrabecular-Massive Hepatocellular Carcinoma (MTM-HCC) is one type of liver cancer showed minimum image signature for accurate non-invasive diagnosis. This study aims to develop and evalu...

High-Quality Patchnet (HQ-PatchNet) for Synthetic CT Generation in Head & Neck Imaging

Authors: So Hyun Ahn, Chris Beltran, Byongsu Choi, Jeong Heon Kim, Jin Sung Kim, Bo Lu, Justin Chunjoo Park, Bongyong Song, Jun Tan

Affiliation: Mayo Clinic, Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Ewha Medical Research Institute, Ewha Womans University College of Medicine, UC San Diego, Yonsei University College of Medicine

Abstract Preview: Purpose:
Cone-beam computed tomography (CBCT) is widely used in IGRT for patient positioning but suffers from low resolution and poor soft tissue contrast. Synthetic CT (sCT) generated from CBCT ad...

Identification of Potential Patients for Resimulation and Adaptive Planning By Machine Learning

Authors: Mark Ashamalla, Renee Farrell, Jinkoo Kim, Kartik Mani, Xin Qian, Samuel Ryu, Yizhou Zhao

Affiliation: Stony Brook Medicine, Stony Brook University Hospital

Abstract Preview: Purpose: Adaptive planning is increasingly used in head and neck radiation therapy due to factors like tumor response or changes in patient anatomy. However, methods such as resimulation or offline re...

Improving Segmentation Precision in Prostate Cancer Adaptive Radiotherapy with the Intentional Deep Overfit Learning (IDOL) Approach

Authors: Seungryong Cho, Donghyeok Choi, Joonil Hwang, Byung-Hee Kang, Jin Sung Kim, Eungman Lee, Younghee Park

Affiliation: Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, KAIST, Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Ewha Womans University of Medicine

Abstract Preview: Purpose: Radiation therapy (RT) is critical for cancer treatment, but changes in tumor size and shape during therapy challenge precise dose delivery. Adaptive radiation therapy (ART) addresses these v...

Insights into Deep Learning Auto-Segmentation for Abdominal Organs in MR-Guided Adaptive Radiation Therapy: A Single-Institution CT-MR Comparison

Authors: Asma Amjad, Renae Conlin, Eric S. Paulson, Christina M. Sarosiek

Affiliation: Department of Radiation Oncology, Medical College of Wisconsin

Abstract Preview: Purpose:
MR-guided adaptive radiation therapy (MRgART) is transforming clinical workflows, requiring fast, accurate organs-at-risk (OARs) contouring. While deep learning auto-segmentation (DLAS) of...

MRI Radiomics-Based Machine Learning Model for Predicting BNCT Treatment Response in Glioblastoma

Authors: Huang Chi-Shiuan, Wu Chih-Chun, Hui-Yu Cathy Tsai, Chen Yan-Han, Chen Yi-Wei, Pan Yi-Ying

Affiliation: Institute of Nuclear Engineering and Science, National Tsing Hua University, Taipei Veterans General Hospital, Tri-Service General Hospital

Abstract Preview: Purpose:
This study aims to develop and validate a machine learning (ML) model based on MRI-derived radiomic features to predict progressive disease (PD) in glioblastoma (GBM) patients four months ...

Multi-Vendor Validation of a Deep Learning-Based Synthetic CT Generation Model for MR-Only Radiotherapy Planning in the Pelvis

Authors: Gregory Bolard, Rabten Datsang, Sarah Ghandour, Timo Kiljunen, Pauliina Paavilainen, Sami Suilamo, Katlin Tiigi

Affiliation: Turku University Hospital, Virginia Commonwealth University, MVision AI, North Estonia Medical Centre, Docrates Cancer Center, Hopital Riviera-Chablais

Abstract Preview: Purpose: To verify the performance of a vendor-neutral deep learning model for synthetic CT generation from T2-weighted and balanced steady-state MR sequences to support both MR-only simulation and MR...

Novel Fast Cone-Beam CT for Adaptive Radiotherapy: Assessment of Image Distortion, Auto-Contouring, and Dose Delivery Accuracy in the Presence of Periodic Subject Motion

Authors: David P. Adam, William T. Hrinivich, Taoran Li, Alexander Lu, Michael Salerno, Alejandro Sisniega, Boon-Keng Kevin Teo

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Johns Hopkins University, University of Pennsylvania

Abstract Preview: Purpose: Cone beam CT (CBCT)-guided online adaptive radiotherapy (ART) is of growing interest, with recent improvements in image quality provided through larger detector panels and fast gantry rotatio...

Patient-Specific Deep Reinforcement Learning Framework for Automatic Replanning in Proton Therapy for Head-and-Neck Cancer

Authors: Malvern Madondo, Mark McDonald, Zhen Tian, Christopher Valdes, Ralph Weichselbaum, Xiaofeng Yang, David Yu, Jun Zhou

Affiliation: Department of Radiation & Cellular Oncology, University of Chicago, University of Chicago, Emory University, Department of Radiology, University of Chicago, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Head-and-neck (HN) cancer patients often experience significant anatomical changes during treatment course. Proton therapy, particularly intensity-modulated proton therapy (IMPT), is sensitiv...

Patient-Specific Treatment Plan Optimization through Intentional Deep Overfit Learning As a Warm Start for Longitudinal Adaptive Radiotherapy

Authors: Wouter Crijns, Frederik Maes, Loes Vandenbroucke, Liesbeth Vandewinckele

Affiliation: Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven; Department of Radiation Oncology, UZ Leuven, Department ESAT/PSI, KU Leuven; Medical Imaging Research Center, UZ Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven

Abstract Preview: Purpose: To explore intentional deep overfit learning (IDOL) to exploit the initial treatment plan to predict an adaptive radiotherapy plan.
Methods: A conditional generative adversarial network is...

Predicting CBCT-Based Adaptive Radiation Therapy Session Duration Using Machine Learning

Authors: Leslie Harrell, Sanjay Maraboyina, Romy Megahed, Maida Ranjbar, Xenia Ray, Pouya Sabouri

Affiliation: Department of Radiation Oncology, University of Arkansas for Medical Sciences (UAMS), University of California San Diego

Abstract Preview: Purpose: Real-time adaptive radiation therapy (ART) dynamically modifies patientsโ€™ treatment plan during delivery to account for anatomical and physiological variations. Addressing ART planning time v...

Predicting Pathological Complete Response to Neoadjuvant Chemotherapy for Breast Cancer at Early Time Points Using a Two-Stage Dual-Task Deep Learning Strategy

Authors: Bowen Jing, Jing Wang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Medical images acquired at multiple time points during neoadjuvant chemotherapy allow physicians to assess patientsโ€™ responses and personalize treatment plans accordingly. Studies from the I-...

Prior-Adapted Progressive Motion-Resolved CBCT Reconstruction Using a Dynamic Reconstruction and Motion Estimation Method

Authors: Hua-Chieh Shao, You Zhang, Ruizhi Zuo

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Cone-beam CT (CBCT) provides on-board patient anatomy for image guidance and treatment adaptation in radiotherapy. However, to compensate for respiration-induced anatomical motion, motion-res...

Real-Time 3D Dose Verification for MR-Guided Online Adaptive Radiotherapy (ART) Via Geometry-Encoded Deep Learning Framework

Authors: Steve B. Jiang, Dan Nguyen, Chenyang Shen, Fan-Chi F. Su, Jiacheng Xie, Shunyu Yan, Daniel Yang, Ying Zhang, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, The University of Texas at Dallas

Abstract Preview: Purpose: Fast dose verification is essential for the safety and efficiency of MR-guided adaptive radiotherapy (ART) as patients anxiously waiting on the treatment couch. Conventional tools often requi...

Scoring Functions for Reinforcement Learning in Accelerated Partial Breast Irradiation Treatment Planning

Authors: Rafe A. McBeth, Kuancheng Wang, Ledi Wang

Affiliation: Department of Radiation Oncology, University of Pennsylvania, Georgia Institute of Technology, University of Pennsylvania

Abstract Preview: Purpose:
The integration of AI in clinical workflows presents unprecedented opportunities to enhance treatment quality in radiation oncology, yet it also demands innovative approaches to address th...

Segmentation Regularized Registration Training Improves Multi-Domain Generalization of Deformable Image Registration for MR-Guided Prostate Radiotherapy

Authors: Lando S. Bosma, Victoria Brennan, Nicolas Cote, ChengCheng Gui, Nima Hassan Rezaeian, Jue Jiang, Sudharsan Madhavan, Josiah Simeth, Neelam Tyagi, Harini Veeraraghavan, Michael J Zelefsky

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, NYU Langone Health, University Medical Center Utrecht, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Deep learning-based deformable image registration (DIR) models often lack robustness when applied to datasets with differing imaging characteristics. We aimed to (1) improve registration netw...

Simultaneous Motion Estimation and Image Reconstruction with Spatiotemporal Implicit Neural Representation Initial (STINR-SMEIR) for Gas Bubble Motion Artifact Reduction in on-Board CBCT Imaging

Authors: Hua-Chieh Shao, Shanshan Tang, Jing Wang, Kai Wang, You Zhang

Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, Department of Radiation Oncology, University of Maryland Medical Center

Abstract Preview: Purpose: Artifacts caused by gas bubble movement in the gastrointestinal tract can severely degrade the image quality of on-board abdominal cone-beam computed tomography (CBCT), impacting its utility ...

Standardized MRI-CT Hybrid Workflow for High-Dose-Rate Image-Guided Adaptive Brachytherapy in Cervical Cancer: Aapm TG-303 Implementation

Authors: Kim Creach, Kim Howard, Julius G. Ojwang, Richard A. Shaw, Neelu Soni

Affiliation: Mercy Hospital Springfield

Abstract Preview: Purpose: To present a standardized MRI-CT hybrid workflow for High-Dose-Rate (HDR) Image-Guided Adaptive Brachytherapy (IGBT) in cervical cancer, aligned with AAPM TG-303, as a model to assist with im...

Tailor-TS System: Tailored Tumor Segmentation System with Facility-Specific Semi-Supervised Learning

Authors: Gong Vincent Hao, Daisuke Kawahara, Jokichi Kawazoe, Yuji Murakami, Ikuno Nishibuchi, Peiying Colleen Ruan, Daguang Xu, Dong Yang

Affiliation: Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima University, NVIDIA

Abstract Preview: Purpose:
Accurate tumor segmentation in head and neck cancer is critical for effective treatment planning, but variability in practices across medical facilities poses challenges for standardizatio...

Towards AI Decision-Support for Online Adaptive Radiotherapy (oART): A Preliminary Study on CBCT-Guided Post-Prostatectomy Oart

Authors: Michael Cummings, Olga M. Dona Lemus, Hana Mekdash, Tyler Moran, Alexander R Podgorsak, Sean M. Tanny, Matthew J. Webster, Lexiang Yang, Dandan Zheng, Yuwei Zhou, Xiaofeng Zhu

Affiliation: Department of Radiation Oncology, University of Rochester, University of Miami, Inova Schar Cancer Institute, University of Rochester

Abstract Preview: Purpose: oART is revolutionizing radiotherapy by allowing treatment plans to be adjusted based on daily imaging, improving targeting precision and potentially enhancing patient outcomes. However, its ...

Two-Stage Clustering and Auto Machine Learning to Predict Chemoradiation Response in Tumor Subregions on FDG PET for La-NSCLC

Authors: Stephen R. Bowen, Shijun Chen, Chunyan Duan, Daniel S. Hippe, Qiantuo Liu, Qianqian Tong, Jiajie Wang, Shouyi Wang, Faisal Yaseen

Affiliation: The University of Texas at Austin, Tongji University, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Fred Hutchinson Cancer Center, University of Texas at Arlington

Abstract Preview: Purpose: Tumor subregion clustering and prediction of region-specific response can augment assessments and adaptive treatment decisions. A modeling framework was constructed to predict chemoradiation ...

Universal Anatomical Mapping and Patient-Specific Prior Implicit Neural Representation for MRI Super-Resolution

Authors: Jie Deng, Yunxiang Li, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Magnetic Resonance Imaging (MRI) has exceptional soft tissue contrast and an essential role in radiotherapy. The introduction of clinical MR-LINACs has enabled adaptive radiotherapy (ART) usi...

Weak-to-Strong Generalization for Interpretable Deep Learning-Based Histological Image Classification Guided By Hand-Crafted Features

Authors: Mark Anastasio, Zong Fan, Hua Li, Changjie Lu, Lulu Sun, Xiaowei Wang, Zhimin Wang, Michael Wu

Affiliation: University of Illinois at Urbana-Champaign, University of Illinois at Chicago, Washington University School of Medicine, University of Illinois Urbana-Champaign, Washington University in St. Louis, University Laboratory High School

Abstract Preview: Purpose: Histological whole slide images (WSIs) are vital in clinical diagnosis. Although deep learning (DL) methods have achieved great success in this task, they often lack interpretability. Traditi...