Search Submissions 🔎

Results for "learning approaches": 34 found

A Hybrid Radiomics-Integrated Machine Learning Framework for Early Identification of Potential Radiation Pneumonitis in Lung Cancer Patients

Authors: Christos Ilioudis, Marios Myronakis, Sotirios Raptis, Kyriaki Theodorou

Affiliation: Medical Physics Department, Medical School, University of Thessaly, Department of Information and Electronic Engineering, International Hellenic University (IHU)

Abstract Preview: Purpose: This study presents a radiomics-driven, machine learning framework developed to predict the possibility of Radiation Pneumonitis (RP), as a side effect of radiation therapy in lung cancer pat...

AI-Assisted Cellular and Organoid Analysis for Lenalidomide-Based Radioimmunotherapy Against Glioblastoma

Authors: ISAAC Amoah, Jackie Austin, Charlotte Block, Kaylee Brilz, Dylan Bui, Andrew E. Ekpenyong, Jayce Hughes, Pralhad Itani, Natasha Ratnapradipa, Sara Strom, Jacob Woolf

Affiliation: Creighton University

Abstract Preview: Purpose:
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults, with a median survival of approximately 15 months despite the current standard of care, which includes s...

Active Learning and Student-Centered Approaches

Authors: Izabella L. Barreto

Affiliation: University of Florida College of Medicine

Abstract Preview: N/A...

Addressing Missing MRI Sequences: A DL-Based Region-Focused Multi-Sequence Framework for Synthetic Image Generation

Authors: Amir Abdollahi, Oliver Jäkel, Maxmillian Knoll, Rakshana Murugan, Adithya Raman, Patrick Salome

Affiliation: UKHD & DKFZ, Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), German Cancer Research Centre(DKFZ), DKFZ, MGH

Abstract Preview: Purpose:
Missing MRI sequences, due to technical issues in data handling or clinical constraints like contrast agent intolerance, limit the use of medical imaging datasets in computational analysis...

Application of Team Science in Medical Physics Research for Undergraduate Students

Authors: Ashley Cetnar

Affiliation: The Ohio State University - James Cancer Hospital

Abstract Preview: Purpose: Undergraduate students are eager to learn more about potential career opportunities. While many physics majors are aware of research opportunities within the physics department, students may ...

Application of the Lymphodose Framework to Brain Tumors: Unveiling the Prognostic Power of Circulating Lymphocyte Doses

Authors: Sophie Bockel, Eric Deutsch, Frederic Dhermain, Ibrahima Diallo, Anh Thu Le, Elaine Limkin, Pauline Maury, Charlotte Robert, Killian Sambourg, Camilla Satragno, Cristina Veres, François de Kermenguy

Affiliation: Gustave Roussy, Département de radiothérapie, Université Paris-Saclay, Gustave Roussy, Inserm U1030, Radiothérapie Moléculaire et Innovation Thérapeutique

Abstract Preview: Purpose:
To study the correlation between the dose to circulating lymphocytes as evaluated by the LymphoDose framework and the incidence of severe radiation-induced lymphopenia (sRIL) in patients t...

BEST IN PHYSICS IMAGING: Revolutionizing Neurocognitive Dynamic Pattern Discovery with Self-Supervised AI in Functional Brain Imaging

Authors: Lei Xing, Zixia Zhou

Affiliation: Department of Radiation Oncology, Stanford University, Department of Radiation Oncology, Stanford University, Stanford

Abstract Preview: Purpose: Functional brain imaging techniques, such as functional magnetic resonance imaging (fMRI), generate high-dimensional, dynamic data reflecting complex neural processes. However, extracting rob...

Beam Orientation Optimization in IMRT Using Sparse Mixed Integer Programming and Non-Convex IMRT Fluence Map Optimization

Authors: Yabo Fu, Yang Lei, Yu Lei, Haibo Lin, Ruirui Liu, Tian Liu, Kenneth Rosenzweig, Charles B. Simone, Shouyi Wei, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai, University of Nebraska Medical Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York Proton Center

Abstract Preview: Purpose: Beam orientation optimization (BOO) in intensity-modulated radiation therapy (IMRT) is traditionally a complex, non-convex problem tackled with heuristic methods. This study benchmarks global...

Clinical Assessment of Synthetic CT in MR-Only Brain Radiotherapy

Authors: Ergun E. Ahunbay, Colette Gage, Abdul Kareem Parchur, Eric S. Paulson

Affiliation: Department of Radiation Oncology, Medical College of Wisconsin

Abstract Preview: Purpose: AI-generated synthetic CT (sCT) images address challenges with prior sCT approaches, including atlas- and threshold-based methods. Commercial AI-based sCT tools have been introduced. This wor...

Clinical Implementation of Automated Contour Quality Assurance in Head and Neck Radiotherapy

Authors: Sam Armstrong, Jamison Louis Brooks, Nicole Johnson, Douglas John Moseley, Cassie Sonnicksen, Erik J. Tryggestad

Affiliation: Mayo Clinic

Abstract Preview: Purpose: To evaluate the feasibility of a shallow learning-based quality assurance (QA) tool designed to assist human reviewers in assessing organ-at-risk (OAR) contours for head and neck radiotherapy...

Comparative Analysis of Quantum-Classical Hybrid and Traditional Deep Learning Approaches for Chest X-Ray Image Classification

Authors: Ji Hye Han, Yookyung Kim, Jang-Hoon Oh, Heesoon Sheen, Han-Back Shin

Affiliation: Ewha Womans university, Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, High-Energy Physics Center, Chung-Ang Universit, Ewha Womans University, Kyung Hee University Hospital

Abstract Preview: Purpose: Chest X-rays are critical for diagnosing conditions such as pneumonia, tuberculosis, and COVID-19. Although deep learning (DL) approaches, especially convolutional neural networks, have signi...

Comprehensive Evaluation of Federated Learning Strategies for Head and Neck Tumor Segmentation on PET/CT Images

Authors: Jingyun Chen, Yading Yuan

Affiliation: Columbia University Irving Medical Center, Department of Radiation Oncology

Abstract Preview: Purpose: To evaluate centralized and decentralized strategies for federated head and neck tumor segmentation on PET/CT.
Methods: We utilized training data from the HEad and neCK TumOR segmentation ...

Deep Learning-Based Categorization of Brain Tumours Using Brain MRI : Advancing Precision Medicine in Neuroimaging

Authors: William F.B Igoniye, Belema Manuel, Christopher F. Njeh, O Ray-offor

Affiliation: Indiana University School of Medicine, Department of Radiation Oncology, Department of Radiology, University of Port Harcourt Teaching Hospital

Abstract Preview: Purpose: The accurate and efficient categorization of brain tumors is essential for effective treatment planning and improved patient outcomes. Current MRI-based diagnostic methods are time-intensive ...

Deep Learning-Based Segmentation for Precision Radiation Therapy in Breast Cancertreatment

Authors: Hamdah Alanazi, Silvia Pella

Affiliation: FAU, Florida Atlantic University

Abstract Preview: Purpose: The appearance of breast cancer in the global list of most common cancers worldwide requires
research for ultimate treatment approaches including radiation therapy to reduce deaths from br...

Development and Validation of a Deep Learning-Based Auto-Segmentation Module for Vestibular Schwannoma

Authors: John Byun, Steven D Chang, Cynthia Fu-Yu Chuang, Xuejun Gu, Melanie Hayden Gephart, Yusuke Hori, Fred Lam, Gordon Li, Lianli Liu, Weiguo Lu, David Park, Erqi Pollom, Elham Rahimy, Deyaaldeen Abu Reesh, Scott Soltys, Gregory Szalkowski, Lei Wang, Xianghua Ye, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Department of Neurosurgery, Stanford University, Department of Radiation Oncology, Stanford University, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose: Accurate and automated delineation of vestibular schwannoma (VS) volume is crucial for disease management, as both treatment approaches (stereotactic radiosurgery and invasive surgery) and mo...

Enhanced 3D Volumetric Denoising for Low-Dose CT Images Using Hformer

Authors: Edward Robert Criscuolo, Chenlu Qin, Deshan Yang, Zhendong Zhang

Affiliation: Duke University, Department of Radiation Oncology, Duke University

Abstract Preview: Purpose:
Low-dose CT (LDCT) imaging minimizes radiation exposure but introduces significant noise, compromising image quality. While deep learning-based denoising models such as HFormer achieve sta...

Enhanced Prediction of Iroc Stereotactic Radiosurgery Phantom Audit Results with Treatment Parameters, Complexity Metrics, DVH, and Dosiomics Using Machine Learning

Authors: Lian Duan, Stephen F. Kry, Hunter S. Mehrens, Christine Peterson, Paige A. Taylor

Affiliation: The University of Texas MD Anderson Cancer Center, UT MD Anderson Cancer Center

Abstract Preview: Purpose: To develop predictive models for IROC SRS head phantom audits and to identify important factors influencing institutional performance.
Methods: The IROC SRS head phantom includes two TLDs ...

Ensuring Consistency in Digital Pathology: Medical Physics Approaches to Comparison of Scanner Contrast and Chromaticity

Authors: Diana Cardona, Casey C. Heirman, William Jeck, Kyle J. Lafata, Xiang Li, Lauren M. Neldner, Jeffrey S. Nelson, Megan K. Russ, Ehsan Samei

Affiliation: Duke University, Department of Radiation Oncology, Duke University, Department of Pathology, Duke University, Clinical Imaging Physics Group, Department of Radiology, Duke University Health System

Abstract Preview: Purpose: Medical physicists have traditionally supported radiation-based medicine, but their expertise can translate to other image-based fields including pathology. As pathology transitions to digita...

Ensuring Consistency in Digital Pathology: Medical Physics Approaches to Comparison of Scanner Sharpness and Artifact Severity

Authors: Diana Cardona, Casey C. Heirman, William Jeck, Kyle J. Lafata, Xiang Li, Lauren M. Neldner, Jeffrey S. Nelson, Megan K. Russ, Ehsan Samei

Affiliation: Duke University, Department of Radiation Oncology, Duke University, Department of Pathology, Duke University, Clinical Imaging Physics Group, Department of Radiology, Duke University Health System

Abstract Preview: Purpose: Medical physicists traditionally support radiation-based medicine, but their expertise is translatable to image-based fields like pathology. As pathology transitions to digital practices, phy...

Feasibility Study of Deep Learning-Based MRI-to-PET Generation for Rectal Cancer: Overall Survival Prediction and Pathological Complete Response Assessment

Authors: Weigang Hu, Zhenhao Li, Jiazhou Wang, Xiaojie Yin, Zhen Zhang

Affiliation: Fudan University Shanghai Cancer Center

Abstract Preview: Purpose:
This study aims to develop and validate a novel deep learning method to generate synthetic PET images for rectal cancer from MRI data. By incorporating metabolic information from the synth...

Graph Neural Network with Long Short-Term Memory for CT-Based Macrotrabecular-Massive Hepatocellular Carcinoma Diagnosis

Authors: Enhui Chang, Yunfei Dong, Yifei Hao, Chengliang Jin, Shengsheng Lai, Yi Long, Mengni Wu, Yulu Wu, Ruimeng Yang, Zhenyu Yang, Yue Yuan, Lei Zhang, Wanli Zhang, Yaogong Zhang

Affiliation: Duke Kunshan University, Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Macrotrabecular-Massive Hepatocellular Carcinoma (MTM-HCC) is one type of liver cancer showed minimum image signature for accurate non-invasive diagnosis. This study aims to develop and evalu...

High-Quality Patchnet (HQ-PatchNet) for Synthetic CT Generation in Head & Neck Imaging

Authors: So Hyun Ahn, Chris Beltran, Byongsu Choi, Jeong Heon Kim, Jin Sung Kim, Bo Lu, Justin Chunjoo Park, Bongyong Song, Jun Tan

Affiliation: Mayo Clinic, Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Ewha Medical Research Institute, Ewha Womans University College of Medicine, UC San Diego, Yonsei University College of Medicine

Abstract Preview: Purpose:
Cone-beam computed tomography (CBCT) is widely used in IGRT for patient positioning but suffers from low resolution and poor soft tissue contrast. Synthetic CT (sCT) generated from CBCT ad...

Mask Guided Diffusion Model for Metal Artifacts Reduction

Authors: Shusen Jing, Qihui Lyu, Dan Ruan, Ke Sheng, Qifan Xu

Affiliation: Department of Radiation Oncology, University of California, Los Angeles, University of California San Francisco, Department of Radiation Oncology, University of California, San Francisco

Abstract Preview: Purpose: Metallic implants can significantly distort sinograms, leading to severe artifacts in computed tomography (CT) reconstructions. Reconstructing CT images containing metal is fundamentally an i...

Multi-Path Deep Learning Model for Predicting Post-Radiotherapy Functional Liver Imaging in Patients with Hepatocellular Carcinoma

Authors: Smith Apisarnthanarax, Stephen R. Bowen, Sunan Cui, Jie Fu, Clemens Grassberger, Yulun He, Yejin Kim, Matthew J. Nyflot, Sharon Pai

Affiliation: Department of Radiation Oncology, University of Washington and Fred Hutchinson Cancer Center, Department of Radiation Oncology, University of Washington, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Department of Physics, University of Washington, University of Washington and Fred Hutchinson Cancer Center

Abstract Preview: Purpose: 99mTc-sulfur colloid SPECT imaging enables quantitative assessment of voxel-wise liver function in patients with hepatocellular carcinoma (HCC). Accurately predicting post-radiotherapy (RT) l...

Online Active Learning Strategies for Global Medical Physics Education: A Scoping Review

Authors: Mary Gronberg, Kelly Kisling, Ana Maria Marques da Silva

Affiliation: University of California, San Diego, The University of Texas Southwestern Medical Center, Pontifical Catholic University of Rio Grande do Sul

Abstract Preview: Purpose: To evaluate the current status of online teaching in medical physics and identify effective active learning strategies for global medical physics education.
Methods: A scoping review was c...

Patient-Specific Treatment Plan Optimization through Intentional Deep Overfit Learning As a Warm Start for Longitudinal Adaptive Radiotherapy

Authors: Wouter Crijns, Frederik Maes, Loes Vandenbroucke, Liesbeth Vandewinckele

Affiliation: Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven; Department of Radiation Oncology, UZ Leuven, Department ESAT/PSI, KU Leuven; Medical Imaging Research Center, UZ Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven

Abstract Preview: Purpose: To explore intentional deep overfit learning (IDOL) to exploit the initial treatment plan to predict an adaptive radiotherapy plan.
Methods: A conditional generative adversarial network is...

Precision Radiotherapy Dose Prediction Using Foundation Model-Augmented Learning

Authors: Hilary P Bagshaw, Mark K Buyyounouski, Xianjin Dai, PhD, Praveenbalaji Rajendran, Lei Xing, Yong Yang

Affiliation: Department of Radiation Oncology, Stanford University, Massachusetts General Hospital, Harvard Medical School

Abstract Preview: Purpose: Artificial intelligence (AI)-driven methods have transformed dose prediction, streamlining the automation of radiotherapy treatment planning. However, traditional approaches depend exclusivel...

Predicting Hormone Receptor Status in Breast Cancer Using Mammographic and Sonographic Data and Machine Learning Models

Authors: Zahra Bagherpour, Manijeh Beigi, Pedram Fadavi, Faraz Kalantari, Moghadaseh Khaleghibizaki, Hengameh Nazari, Mojtaba Safari, Sepideh Soltani

Affiliation: Department of Radiation Oncology, School of Medicine, Iran University of Medical Sciences, Department of Radiation Oncology, School of Medicine, Emory University and Winship Cancer Institute, Department of Radiation Oncology, Iran University of Medical Sciences, University of Arkansas for medical sciences, Department of Radiation physics, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences

Abstract Preview: Purpose: This study aims to evaluate whether readily available mammographic and sonographic data, combined with machine learning (ML) models, can predict critical molecular factors (ER, PR, HER2) in b...

Quantitative Fluorescence Imaging and Spatial Transcriptomics Reveal Compartment-Specific Immune Dynamics in HPV+ Oropharyngeal Cancer

Authors: Casey C. Heirman, Kyle J. Lafata, Xiang Li, Breylon Riley, Jack B Stevens, Tammara Watts

Affiliation: Duke University, Department of Radiation Oncology, Duke University

Abstract Preview: Purpose: To leverage quantitative fluorescence imaging and spatial transcriptomics for characterizing the spatial and molecular heterogeneity of the tumor microenvironment (TME) in HPV+ head and neck ...

Scoring Functions for Reinforcement Learning in Accelerated Partial Breast Irradiation Treatment Planning

Authors: Rafe A. McBeth, Kuancheng Wang, Ledi Wang

Affiliation: Department of Radiation Oncology, University of Pennsylvania, Georgia Institute of Technology, University of Pennsylvania

Abstract Preview: Purpose:
The integration of AI in clinical workflows presents unprecedented opportunities to enhance treatment quality in radiation oncology, yet it also demands innovative approaches to address th...

Tailor-TS System: Tailored Tumor Segmentation System with Facility-Specific Semi-Supervised Learning

Authors: Gong Vincent Hao, Daisuke Kawahara, Jokichi Kawazoe, Yuji Murakami, Ikuno Nishibuchi, Peiying Colleen Ruan, Daguang Xu, Dong Yang

Affiliation: Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima University, NVIDIA

Abstract Preview: Purpose:
Accurate tumor segmentation in head and neck cancer is critical for effective treatment planning, but variability in practices across medical facilities poses challenges for standardizatio...

Task-Specific Deep-Neural-Network Architecture Optimization for CBCT Scatter Correction

Authors: Hoyeon Lee

Affiliation: University of Hong Kong

Abstract Preview: Purpose: Deep-learning approaches are widely investigated for Cone-Beam CT (CBCT) scatter correction to improve the quality of the linear-accelerator mounted CBCT. This study aims to optimize the deep...

Towards Real-Time Radiotherapy Monitoring By Cherenkov Imaging: Applications of Patient-Specific Bio-Morphological Features Segmented Via Deep Learning

Authors: Petr Bruza, Yao Chen, David J. Gladstone, Lesley A Jarvis, Brian W Pogue, Kimberley S Samkoe, Yucheng Tang, Shiru Wang, Rongxiao Zhang

Affiliation: NVIDIA Corp, Dartmouth College, Thayer School of Engineering, Dartmouth College, Dartmouth Cancer Center, University of Missouri, University of Wisconsin - Madison

Abstract Preview: Purpose: Cherenkov imaging provides real-time visualization of megavoltage radiation beam delivery during radiotherapy. Patient-specific bio-morphological features, such as vasculature, captured in th...

“See” through Surface: Transforming Surface Imaging into a Real-Time Three-Dimensional Imaging Solution for Intra-Treatment Image Guidance

Authors: Steve B. Jiang, Ruiqi Li, Hua-Chieh Shao, Kenneth Westover, You Zhang, Tingliang Zhuang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Respiratory motion is a long-standing challenge for lung SBRT, particularly for centrally-located lung tumors where increased toxicity demands more precise motion management during treatme...