Search Submissions πŸ”Ž

Results for "learning automatic": 29 found

3D Image Quality Evaluation of a New CT Scanner Employing 3D Landmark Scans, Super Resolution Reconstruction, and Ag Beam Filtration

Authors: Ishika Bhaumik, John M. Boone, Michael T Corwin, Eric S Diaz, Ahmadreza Ghasemiesfe, Andrew M. Hernandez, Sarah E. McKenney, Misagh Piran, Ali Uneri, Eric L White

Affiliation: UC Davis, UC Davis Health, University of California, Johns Hopkins Univ

Abstract Preview: Purpose: A new model CT scanner (Canon Aquilion One Insight) was recently installed at our institution, and it included a 3D Landmark (3DLM) scan for automatic scan planning, a new deep learning recon...

A Method for Automatic Working Angle Prediction during Intracranial Aneurysms Embolization

Authors: Tina Ehtiati, Grace Jianan Gang, Limei Ma, Oleg Shekhtman, Visish M. Srinivasan

Affiliation: Siemens Medical Solutions USA, Inc., University of Pennsylvania

Abstract Preview: Purpose: Saccular aneurysms are the most common type of intracranial aneurysm and are typically treated by endovascular embolization. The procedure requires approximately orthogonal fluoroscopy images...

A SAM-Guided and Match-Based Semi-Supervised Segmentation Framework for Medical Imaging

Authors: Weiguo Lu, Jax Luo, Xiaoxue Qian, Hua-Chieh Shao, Guoping Xu, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, Harvard Medical School

Abstract Preview: Purpose:
Semi-supervised segmentation leverages sparse annotation information to learn rich representations from combined labeled and label-less data for segmentation tasks. This study leverages th...

A Self-Supervised Deep Learning Approach for Automatic Identification and Metal Artifact Reduction in Cone-Beam CT for Brachytherapy

Authors: Rani Anne', Wenchao Cao, Yingxuan Chen, Wookjin Choi, Firas Mourtada, Yevgeniy Vinogradskiy

Affiliation: Thomas Jefferson University

Abstract Preview: Purpose: In-room mobile cone-beam CT (CBCT) is emerging to enhance high-dose-rate (HDR) brachytherapy workflow using on-demand imaging. However, metal artifacts from X-ray markers inside gynecological...

A Semi-Automated Landmark Identification Framework for Liver MR-CT Image Pairs: Towards a Multi-Modality DIR Benchmark Dataset

Authors: Deshan Yang, Zhendong Zhang

Affiliation: Duke University, Department of Radiation Oncology, Duke University

Abstract Preview: Purpose:
The evaluation of deformable image registration (DIR) algorithms is crucial for improving accuracy and clinical adoption. However, reliable benchmarks, especially for inter-modality regist...

Advancing Deep Segmentation Accuracy in CBCT for Radiotherapy Via Robust Scatter Mitigation: First Results from a Pilot Trial

Authors: Cem Altunbas, Farhang Bayat, Roy Bliley, Rupesh Dotel, Brian Kavanagh, Uttam Pyakurel, Tyler Robin, Ryan Sabounchi

Affiliation: Department of Radiation Oncology, University of Colorado School of Medicine, Taussig Cancer Center, Cleveland Clinic, University of Colorado Anschutz Medical Campus

Abstract Preview: Purpose: Automatic segmentation of anatomical structures in CBCT images is key to enabling dose delivery monitoring and online plan modifications in radiotherapy. However, poor image quality can degra...

Automated Diagnosis of Pancreatic Cancer Using Both Radiomics and 3D-Convolutional Neural Network

Authors: Beth Bradshaw Ghavidel, Benyamin Khajetash, Yang Lei, Meysam Tavakoli

Affiliation: Icahn School of Medicine at Mount Sinai, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Emory University, Department of Radiation Oncology, Emory University

Abstract Preview: Purpose: Pancreatic cancer is among the most aggressive types of cancer, with a five-year survival rate of approximately 10%. Recent studies show that radiomics and deep learning (DL)-based methods ar...

Automatic Contour Quality Assurance Using Deep-Learning Based Contours

Authors: Laurence Edward Court, Raphael Douglas, David Fuentes, Anuja Jhingran, Barbara Marquez, Raymond Mumme, Christine Peterson, Julianne M. Pollard-Larkin, Surendra Prajapati, Dong Joo Rhee, Thomas J. Whitaker

Affiliation: MD Anderson Cancer Center, The University of Texas MD Anderson Cancer Center, MD Anderson, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center

Abstract Preview: Purpose: Safe deployment of auto-contouring models requires the inclusion of automated quality assurance (QA). One approach is to use an independent auto-contouring model and compare the contours geom...

Automatic Specific Absorption Rate (SAR) Prediction for Hyperthermia Treatment Planning (HTP) Using Deep Learning Method

Authors: Yankun Lang, Lei Ren, Dario B. Rodrigues

Affiliation: University of Maryland School of Medicine, Department of Radiation Oncology, University of Maryland School of Medicine

Abstract Preview: Purpose:
HTP of microwave (MW) phased-array systems determine MW antenna settings to maximize energy absorption (SAR in W/kg) in tumor. Conventional HTP algorithms calculate SAR based on electromag...

Automatic Tumor Segmentation and Catheter Detection from MRI for Cervical Cancer Brachytherapy Using Uncertainty-Aware Dual Convolution-Transformer Unet

Authors: Majd Antaki, Rohini Bhatia, Gayoung Kim, Yosef Landman, Junghoon Lee, Akila N. Viswanathan

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Physics and Advanced Development Elekta

Abstract Preview: Purpose: Brachytherapy is a standard radiation therapy approach for cervical cancer, which directly delivers radiation source to the tumor using catheters. Treatment planning requires identification o...

Brain Tumor Segmentation from Multi-Parametric MRI with Integrated Evidential Uncertainty Estimation

Authors: Sahaja Acharya, Matthew Ladra, Junghoon Lee, Lina Mekki

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Department of Biomedical Engineering, Johns Hopkins University

Abstract Preview: Purpose: Multi-parametric MRI (mpMRI) is widely used for deep learning (DL)-based automatic segmentation of brain tumors. While multi-contrast images concatenated as channels are typically input to ne...

Clinical Feasibility of a Deep-Learning-Based Auto Contouring through Qualitative and Dosimetric Assessments

Authors: Sara Endo, Takeshi Fujisawa, Hidehiro Hojo, Masaki Nakamura, Hidenobu Tachibana

Affiliation: Department of Radiation Oncology, National Cancer Center Hospital East, Radiation Safety and Quality Assurance Division, National Cancer Center Hospital East

Abstract Preview: Purpose: To assess the clinical feasibility of deep learning (DL)-based automated contouring through qualitative and quantitative assessments.

Methods: Sixty cases were chosen, including 3 OARs...

Deep Learning Based Automatic Cerebrovascular Segmentation in Multi-Center TOF-MRA Datasets

Authors: Gayoung Kim, Junghoon Lee

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University

Abstract Preview: Purpose: 3D time-of-flight magnetic resonance angiography (TOF-MRA) is widely used for visualizing cerebrovascular structures. Accurate segmentation of cerebrovascular structures is critical for relia...

Enhancing CNN-Based Brain Metastasis Detection in MRI By Integrating Locoregional 3D Deformation Technique

Authors: Minbin Chen, Ke Lu, Kaizhong Shi, Chunhao Wang, Chuan Wu, Zhenyu Yang, Fang-Fang Yin, Jingtong Zhao

Affiliation: The First People's Hospital of Kunshan, Duke University, Medical Physics Graduate Program, Duke Kunshan University, Duke Kunshan University, Department of Radiation Oncology, Duke Kunshan University

Abstract Preview: Purpose: MRI-based automatic detection of brain metastases is often challenged by the small size and subtle nature of metastases. This study aimed to develop a novel deep learning-based brain metastas...

Evaluating the Impact of Contour Variability on the Effectiveness of Deep Learning Features in Head and Neck Imaging

Authors: Hania A. Al-Hallaq, Xuxin Chen, Anees H. Dhabaan, Elahheh (Ella) Salari, Xiaofeng Yang

Affiliation: Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose:
Radiomics image analysis could lead to the development of predictive signatures and personalized radiotherapy treatments. However, variations in delineation are known to affect hand-crafte...

Explainable AI with Attention Gates for Transparent and Interpretable Lung Radiotherapy Plan Evaluation

Authors: Jeffrey D. Bradley, Steven J. Feigenberg, Cole Friedes, Yin Gao, Xun Jia, Kevin Teo, Lingshu Yin, Jennifer Wei Zou

Affiliation: Department of Radiation Oncology, University of Pennsylvania, Johns Hopkins University

Abstract Preview: Purpose: Understanding how physicians evaluate plans is critical for automatic planning and ensuring consistent, high-quality care. While deep-learning models excel in complex decision-making, the lac...

Foundation Model-Augmented Learning for Automatic Delineation in Precision Radiotherapy

Authors: Xianjin Dai, PhD, Michael Gensheimer, Praveenbalaji Rajendran, Lei Xing, Yong Yang

Affiliation: Department of Radiation Oncology, Stanford University, Massachusetts General Hospital, Harvard Medical School

Abstract Preview: Purpose: Recent advances in the automatic delineation of radiotherapy treatment targets, which incorporate linguistic clinical data extracted by large language models (LLMs) into traditional visual-on...

From Prediction to Practice: Performance of a Deep Learning-Based Breast Planning Algorithm

Authors: Thomas L. Hayes, Nicholas C. Koch, Han Liu, Qingyang (Grace) Shang, Benjamin J. Sintay, Caroline Vanderstraeten, David B. Wiant

Affiliation: Fuse Oncology, Cone Health, Cone Health Cancer Center

Abstract Preview: Purpose:
This study evaluates the accuracy of a deep learning-based automatic breast planning script in predicting beam energy for breast cancer treatments. The script was validated and implemented...

Human-like Deep Learning-Based Whole-Brain Radiotherapy Treatment Planning

Authors: Adnan Jafar, Xun Jia, An Qin

Affiliation: Johns Hopkins University

Abstract Preview: Purpose: 3D whole-brain radiotherapy (WBRT) is widely used due to its simplicity and effectiveness. While modern treatment planning systems, like RayStation, offer automated Field-in-Field planning, p...

Incorporating Physicians’ Contouring Style into Auto-Segmentation of Clinical Target Volume for Post-Operative Prostate Cancer Radiotherapy Using a Language Encoder

Authors: Steve B. Jiang, Chien-Yi Liao, Dan Nguyen, Daniel Yang, Hengrui Zhao

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Post-operative radiotherapy for prostate cancer requires precise contouring of the clinical target volume (CTV) to account for microscopic disease that is invisible in the image. However, ...

Integrating Clinical Knowledge Via Llms for Precise Organ-at-Risk Segmentation in Pancreatic Cancer SBRT

Authors: Karyn A Goodman, Yang Lei, Tian Liu, Pretesh Patel, Jing Wang, Kaida Yang, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: This study aims to improve organ-at-risk (OAR) segmentation in pancreatic cancer stereotactic body radiotherapy (SBRT) by integrating clinical guidelines into deep learning workflows. We use ...

Integrating Large Kernel Attention Mechanism into Deep Learning Model for Automatic and Auccrate Segmentation of Gross Tumor Volume in Lung Cancer Patients

Authors: Xuezhen Feng, Li-Sheng Geng, Haoze Li, Xi Liu, Tianyu Xiong, Ruijie Yang

Affiliation: Department of Health Technology and Informatics, The Hong Kong Polytechnic University, School of Physics, Beihang University, School of Nuclear Science and Technology, University of South China, Department of Radiation Oncology, Peking University Third Hospital

Abstract Preview: Purpose: This study aimed to develop a deep learning-based algorithm for automatically delineate gross tumor volume (GTV) for lung cancer patients, alleviating the workload of radiologists and improvi...

Integrating Neuroanatomic Knowledge in Clinical Target Volumes for Glioma Patients Using Deep Learning

Authors: Ali Ajdari, Thomas R. Bortfeld, Christopher Bridge, Gregory Buti, Marcela Giovenco, Fredrik Lofman, Gregory C. Sharp, Helen A Shih, Tugba Yilmaz

Affiliation: Massachusetts General Hospital, RaySearch Laboratories, Department Of Radiation Oncology, Massachusetts General Hospital (MGH), Massachusetts General Hospital & Harvard Medical School, Massachusetts General Hospital and Harvard Medical School

Abstract Preview: Purpose: Defining radiation target volumes with accurate integration of the neuroanatomy is one of the major difficulties in designing glioma treatments. We developed a deep learning network for norma...

Nnae: Automating Anomaly Detection and Quality Assurance in Medical Image Segmentation

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose:
Deep learning-based automatic medical image segmentation is increasingly employed in clinical practice, significantly reducing manual workload. However, verifying segmentation results rema...

Non-Contact Blood Pressure Estimation Using Remote Photoplethysmography Signals Extracted from Facial Video: A Deep Learning Approach

Authors: Mavlonbek Khomidov, Jong-Ha Lee

Affiliation: Department of Biomedical Engineering, Keimyung University, Department of Computer Engineering, Keimyung University

Abstract Preview: Purpose: In this research, we aim to estimate blood pressure using remote photoplethysmography (rPPG) signal extracted from facial video. This method provides non-invasive and contactless, continuous ...

Patient-Specific Deep Reinforcement Learning Framework for Automatic Replanning in Proton Therapy for Head-and-Neck Cancer

Authors: Malvern Madondo, Mark McDonald, Zhen Tian, Christopher Valdes, Ralph Weichselbaum, Xiaofeng Yang, David Yu, Jun Zhou

Affiliation: Department of Radiation & Cellular Oncology, University of Chicago, University of Chicago, Emory University, Department of Radiology, University of Chicago, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Head-and-neck (HN) cancer patients often experience significant anatomical changes during treatment course. Proton therapy, particularly intensity-modulated proton therapy (IMPT), is sensitiv...

Ratoguide: Evaluation of AI-Driven Fully Automated Treatment Planning Support System for Lung SBRT

Authors: Keiichi Jingu, Noriyuki Kadoya, Takafumi Komiyama, Takeru Nakajima, Hikaru Nemoto, Hiroshi Onishi, Masahide Saito, Ryota Tozuka

Affiliation: Department of Radiology, University of Yamanashi, Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Department of Advanced Biomedical Imaging, University of Yamanashi

Abstract Preview: Purpose: We evaluated the accuracy of a new AI-based fully automated planning software in stereotactic body radiotherapy (SBRT) for early-stage lung cancer.
Methods: We collected data from 125 pati...

Spatially Informed Auto-Segmentation of Cardiac Nodes for Radiotherapy Treatment Planning

Authors: Ming Dong, Carri K. Glide-Hurst, Joshua Pan, Nicholas R. Summerfield

Affiliation: Department of Computer Science, Wayne State University, Departments of Human Oncology and Medical Physics, University of Wisconsin-Madison, Department of Human Oncology, University of Wisconsin-Madison

Abstract Preview: Purpose: Radiation dose to the cardiac nodes is more strongly associated with conduction disorders and arrythmias than whole heart (WH) metrics. However, node segmentation is challenging due to comple...

Towards Real-Time Radiotherapy Monitoring By Cherenkov Imaging: Applications of Patient-Specific Bio-Morphological Features Segmented Via Deep Learning

Authors: Petr Bruza, Yao Chen, David J. Gladstone, Lesley A Jarvis, Brian W Pogue, Kimberley S Samkoe, Yucheng Tang, Shiru Wang, Rongxiao Zhang

Affiliation: NVIDIA Corp, Dartmouth College, Thayer School of Engineering, Dartmouth College, Dartmouth Cancer Center, University of Missouri, University of Wisconsin - Madison

Abstract Preview: Purpose: Cherenkov imaging provides real-time visualization of megavoltage radiation beam delivery during radiotherapy. Patient-specific bio-morphological features, such as vasculature, captured in th...