Search Submissions 🔎

Results for "learning networks": 119 found

18F-FDG PET/CT-Based Deep Radiomic Models for Enhancing Chemotherapy Response Prediction in Breast Cancer

Authors: Ke Colin Huang, Zirui Jiang, Joshua Low, Christopher F. Njeh, Oluwaseyi Oderinde, Yong Yue

Affiliation: Purdue University, Indiana University School of Medicine, Department of Radiation Oncology

Abstract Preview: Purpose: Enhancing the accuracy of tumor response predictions enables the development of tailored therapeutic strategies for patients with breast cancer (BCa). In this study, we developed deep-radiomi...

A Deep Learning-Based Approach for Rapid Prediction of IMRT/VMAT Patient-Specific Quality Assurance for Online Adaptive Plans Generated with a 0.35T MR-Linac

Authors: Suman Gautam, Tianjun Ma, William Song

Affiliation: Virginia Commonwealth University

Abstract Preview: Purpose: We propose an artificial intelligence (AI)-based method to rapidly predict the patient-specific quality assurance (PSQA) results for magnetic resonance (MR)-guided online adaptive radiation th...

A Modular Approach to Reversible and Stackable Medical Imaging Translation Models: CBCT-Based Synthetic MRI with Multiple U-Nets in Series (MUNETs)

Authors: Eric Chang, Nguyen Phuong Dang, Andrew Lim, Lauren Lukas, Lijun Ma, Yutaka Natsuaki, Zhengzheng Xu, Hualin Zhang

Affiliation: Radiation Oncology, Keck School of Medicine of USC

Abstract Preview: Purpose: Harnessed the power of AI and Deep Learning (DL), Generalized Neural Network models for medical image transformation are trained to predict target images from reference images, often requirin...

A Novel Non-Measured and DVH-Based IMRT QA Framework with Machine Learning for Instant Classification of Susceptible Lung SBRT VMAT Plans

Authors: Chuan He, Anh H. Le, Iris Z. Wang

Affiliation: Roswell Park Comprehensive Cancer Center, Cedars-Sinai

Abstract Preview: Purpose: To develop a non-measured and DVH-based (NMDB) IMRT QA framework integrating machine learning (ML) to classify lung SBRT VMAT plans prone to delivery errors
Methods: 560 Eclipse AcurosXB l...

A Real-Time Framework for Fiducial Tracking and Intrafraction Motion Assessment of Cyberknife in Stereotactic Body Radiation Therapy for Liver Cancer

Authors: Ruiyan Du, Mingzhu Li, Ying Li, Wei Liu, Shihuan Qin, Yiming Ren, Biao Tu, Hui Xu, Lian Zhang, Xiao Zhang, Zengren Zhao

Affiliation: Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Medical AI Lab, The First Hospital of Hebei Medical University, Hebei Provincial Engineering Research Center for AI-Based Cancer Treatment Decision-Making, The First Hospital of Hebei Medical University, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Department of Radiation Oncology, Mayo Clinic, Department of Oncology, The First Hospital of Hebei Medical University

Abstract Preview: Purpose: Fiducial tracking is widely used in CyberKnife to dynamically guide the gantry for moving target like liver cancer stereotactic body radiation therapy (SBRT). This study developed a robust fr...

A Self-Supervised Deep Learning Approach for Automatic Identification and Metal Artifact Reduction in Cone-Beam CT for Brachytherapy

Authors: Rani Anne', Wenchao Cao, Yingxuan Chen, Wookjin Choi, Firas Mourtada, Yevgeniy Vinogradskiy

Affiliation: Thomas Jefferson University

Abstract Preview: Purpose: In-room mobile cone-beam CT (CBCT) is emerging to enhance high-dose-rate (HDR) brachytherapy workflow using on-demand imaging. However, metal artifacts from X-ray markers inside gynecological...

A Two-Layer, Two-Task Prediction Model Based on 3D Imaging and Residual Networks for Mid-Chemoradiation Tumor Response Prediction on FDG PET for La-NSCLC

Authors: Stephen R. Bowen, Chunyan Duan, Daniel S. Hippe, Qiantuo Liu, Jing Sun, Jiajie Wang, Shouyi Wang, Faisal Yaseen, Xiaojing Zhu

Affiliation: Tongji University, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Shanghai University of Electric Power, Fred Hutchinson Cancer Center, University of Texas at Arlington

Abstract Preview: Purpose: Accurate prediction of patient response to radiotherapy plays a crucial role in monitoring disease progression and assessing treatment efficacy, enabling clinicians to develop personalized th...

A Vqvae-Based Framework with Embedded Kullback-Leibler Divergence for Stochastic and Diverse Dose Prediction

Authors: Weigang Hu

Affiliation: Fudan University Shanghai Cancer Center

Abstract Preview: Purpose: The purpose of this study is to introduce a VQVAE-based framework that addresses the limitations of conventional dose prediction methods, which rely on fixed deep learning models that produce...

A Window-Level Based Approach for Generating Missing Tissue in CT Scans Using a Transformer-Gan Model

Authors: Mojtaba Behzadipour, Siyong Kim, Mitchell Polizzi, Richard R. Wargo, Lulin Yuan

Affiliation: VCU Health - Department of Radiology, Virginia Commonwealth University

Abstract Preview: Purpose:
The purpose of this study is to develop a method for generating missing tissue in CT scans of patients with large body sizes, where the field of view (FOV) of the scanner fails to capture ...

AI-Based Registration-Free 3T T2-Weighted MRI Synthesis Using Truefisp MRI Acquired on a 0.35T MR-Linac System

Authors: Hilary P Bagshaw, Mark K Buyyounouski, Cynthia Fu-Yu Chuang, Yu Gao, Dimitre Hristov, Lianli Liu, Lawrie Skinner, Lei Xing

Affiliation: Department of Radiation Oncology, Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose:
MR-guided radiation therapy has introduced a significant leap in cancer treatment by allowing adaptive treatment. The low-field MR-guided system predominantly uses the TrueFISP sequence, w...

Addressing Missing MRI Sequences: A DL-Based Region-Focused Multi-Sequence Framework for Synthetic Image Generation

Authors: Amir Abdollahi, Oliver Jäkel, Maxmillian Knoll, Rakshana Murugan, Adithya Raman, Patrick Salome

Affiliation: UKHD & DKFZ, Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), German Cancer Research Centre(DKFZ), DKFZ, MGH

Abstract Preview: Purpose:
Missing MRI sequences, due to technical issues in data handling or clinical constraints like contrast agent intolerance, limit the use of medical imaging datasets in computational analysis...

Advancing Biodosimetry with AI: Detecting Dicentric Chromosomes Using Convolutional Neural Networks

Authors: Adayabalam Balajee, Elijah Berberette, Maria Escalona, Dray Gentry, Chester R. Ramsey, Terri Ryan

Affiliation: ORAU, Thompson Proton Center, University of Tennessee

Abstract Preview: Purpose:
Dicentric chromosomes, characterized by two centromeres on a single chromosome, are key biomarkers in biological dosimetry for quantifying ionizing radiation exposure. However, manual dete...

Advancing Thoracic Synthetic CT Images with Enhanced Cyclegan for Adaptive Radiotherapy Applications

Authors: Silambarasan Anbumani, Nicolette O'Connell, Eenas A. Omari, Amanda Pan, Eric S. Paulson, Lindsay Puckett, Monica E. Shukla, Dan Thill, Jiaofeng Xu

Affiliation: Elekta Inc, Elekta Limited, Linac House, Department of Radiation Oncology, Medical College of Wisconsin

Abstract Preview: Purpose: Accurate electron density information from on-board imaging is essential for direct dose calculations in adaptive radiotherapy (ART). This study evaluates a deep learning model for thoracic s...

An Efficient Deep Learning Model with Multi-Scale Integration for Automated Pancreas Segmentation on MR Images

Authors: Jingyun Chen, Yading Yuan

Affiliation: Columbia University Irving Medical Center, Department of Radiation Oncology

Abstract Preview: Purpose: To develop and evaluate the Scale-attention network (SANet) for automated pancreas segmentation on MR images.
Methods: To develop SANet, we extended the classic U-Net design with a dynamic...

Artificial Intelligence-Powered Conventional Energy Integrating Detector-Based Coronary CT Angiography: Learning High-Resolution and Multi-Energy Imaging from Photon-Counting Detector CT

Authors: Shaojie Chang, Thomas A. Foley, Hao Gong, Emily Koons, Shuai Leng, Cynthia H. McCollough, Eric E. Williamson

Affiliation: Mayo Clinic

Abstract Preview: Purpose: To enhance coronary CT angiography (cCTA) capabilities on conventional energy integrating detector CT (EID-CT) using artificial intelligence (AI). The AI framework incorporates high-resolutio...

Assessing the Risks of Synthetic MRI Data in Deep Learning: A Study on U-Net Segmentation Accuracy

Authors: Chuangxin Chu, Haotian Huang, Tianhao Li, Jingyu Lu, Zhenyu Yang, Fang-Fang Yin, Tianyu Zeng, Chulong Zhang, Yujia Zheng

Affiliation: The Hong Kong Polytechnic University, Nanyang Technological University, Australian National University, Medical Physics Graduate Program, Duke Kunshan University, North China University of Technology, Duke Kunshan University

Abstract Preview: Purpose: Deep learning segmentation models, such as U-Net, rely on high-quality image-segmentation pairs for accurate predictions. However, the recent increasing use of generative networks for creatin...

Automated Diagnosis of Pancreatic Cancer Using Both Radiomics and 3D-Convolutional Neural Network

Authors: Beth Bradshaw Ghavidel, Benyamin Khajetash, Yang Lei, Meysam Tavakoli

Affiliation: Icahn School of Medicine at Mount Sinai, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Emory University, Department of Radiation Oncology, Emory University

Abstract Preview: Purpose: Pancreatic cancer is among the most aggressive types of cancer, with a five-year survival rate of approximately 10%. Recent studies show that radiomics and deep learning (DL)-based methods ar...

BEST IN PHYSICS IMAGING: Cross-Contrast Diffusion: A Synergistic Approach for Simultaneous Multi-Contrast MRI Super-Resolution

Authors: Yifei Hao, Wenxuan Li, Xiang Li, Tao Peng, Yulu Wu, Fang-Fang Yin, Yue Yuan, Lei Zhang, Yaogong Zhang

Affiliation: Duke University, School of Future Science and Engineering, Soochow University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Diffusion-based deep-learning frameworks have been recently used in MRI resolution enhancement, or super-resolution. Multi-contrast MRI share common anatomical structures while holding comple...

BEST IN PHYSICS IMAGING: Revolutionizing Neurocognitive Dynamic Pattern Discovery with Self-Supervised AI in Functional Brain Imaging

Authors: Lei Xing, Zixia Zhou

Affiliation: Department of Radiation Oncology, Stanford University, Department of Radiation Oncology, Stanford University, Stanford

Abstract Preview: Purpose: Functional brain imaging techniques, such as functional magnetic resonance imaging (fMRI), generate high-dimensional, dynamic data reflecting complex neural processes. However, extracting rob...

Beam Orientation Optimization in IMRT Using Sparse Mixed Integer Programming and Non-Convex IMRT Fluence Map Optimization

Authors: Yabo Fu, Yang Lei, Yu Lei, Haibo Lin, Ruirui Liu, Tian Liu, Kenneth Rosenzweig, Charles B. Simone, Shouyi Wei, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai, University of Nebraska Medical Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York Proton Center

Abstract Preview: Purpose: Beam orientation optimization (BOO) in intensity-modulated radiation therapy (IMRT) is traditionally a complex, non-convex problem tackled with heuristic methods. This study benchmarks global...

Binary Classification of Lymphedema in 3DCRT Patients Using Machine Learning on 3D Dose Distribution Data

Authors: Jee Suk Chang, Hojin Kim, Jin Sung Kim, Jaehyun Seok

Affiliation: Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Department of Integrative Medicine

Abstract Preview: Purpose: This study aims to leverage 3D dose distribution data to develop a machine learning model capable of accurately predicting lymphedema occurrence in patients undergoing 3D conformal radiation ...

Biologically Guided Deep Learning for MRI-Based Brain Metastasis Outcome Prediction after Stereotactic Radiosurgery

Authors: Evan Calabrese, Hangjie Ji, Kyle J. Lafata, Casey Y. Lee, Eugene Vaios, Chunhao Wang, Lana Wang, Zhenyu Yang, Jingtong Zhao

Affiliation: Duke University, Department of Radiation Oncology, Duke University, Duke Kunshan University, North Carolina State University

Abstract Preview: Purpose: To develop a biologically guided deep learning (DL) model for predicting brain metastasis(BM) local control outcomes following stereotactic radiosurgery (SRS). By integrating pre-SRS MR image...

Biomechanically Guided Deep Learning for Deformable Multimodality Liver Registration Framework

Authors: Yunfei Dong, Dongyang Guo, Zhenyu Yang, Fang-Fang Yin, Zeyu Zhang

Affiliation: Duke University, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose:
To develop a Biomechanically Guided Deep Learning Registration Network (BG-DRNet) that improves both accuracy and physiological plausibility in liver image registration. While cone-beam CT...

Brain Tumor Segmentation from Multi-Parametric MRI with Integrated Evidential Uncertainty Estimation

Authors: Sahaja Acharya, Matthew Ladra, Junghoon Lee, Lina Mekki

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Department of Biomedical Engineering, Johns Hopkins University

Abstract Preview: Purpose: Multi-parametric MRI (mpMRI) is widely used for deep learning (DL)-based automatic segmentation of brain tumors. While multi-contrast images concatenated as channels are typically input to ne...

Cerebellar Mutism Syndrome Prediction with 3D Residual Convolutional Neural Network

Authors: Sahaja Acharya, Matthew Ladra, Junghoon Lee, Lina Mekki, Bohua Wan

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Department of Biomedical Engineering, Johns Hopkins University, Department of Computer Science, Johns Hopkins University

Abstract Preview: Purpose: Cerebellar mutism syndrome (CMS) is the most frequently observed complication in children undergoing surgical resection of posterior fossa tumors. Previous work explored lesion to symptom map...

Compact Representation of External Beam Photon Phase Space Data Via Implicit Neural Representation Learning

Authors: Serdar Charyyev, Cynthia Fu-Yu Chuang, Veng Jean Heng, Lianli Liu, Lei Xing, Yong Yang

Affiliation: Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose: To replace large finite-size photon phase space files with a compact neural network capable of generating an infinite number of particles.
Methods: Three separate models were developed to ...

Comparative Analysis of Nine Deep Learning Architectures for Variable Density Grappa 1H Magnetic Resonance Spectroscopy Imaging (MRSI) Reconstruction

Authors: Kimberly Chan, Anke Henning, Mahrshi Jani, Andrew Wright, Xinyu Zhang

Affiliation: Advanced Imaging Research Center (AIRC), UT Southwestern Medical Center

Abstract Preview: Purpose: To evaluate the performance of multiple deep learning architectures for MRSI reconstruction and determine their effectiveness in maintaining high-resolution metabolite mapping while reducing ...

Comparative Analysis of Quantum-Classical Hybrid and Traditional Deep Learning Approaches for Chest X-Ray Image Classification

Authors: Ji Hye Han, Yookyung Kim, Jang-Hoon Oh, Heesoon Sheen, Han-Back Shin

Affiliation: Ewha Womans university, Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, High-Energy Physics Center, Chung-Ang Universit, Ewha Womans University, Kyung Hee University Hospital

Abstract Preview: Purpose: Chest X-rays are critical for diagnosing conditions such as pneumonia, tuberculosis, and COVID-19. Although deep learning (DL) approaches, especially convolutional neural networks, have signi...

Comparison of AI-Based and Ants for Longitudinal Deformable Image Registration in Head and Neck Cancer

Authors: Aditya P. Apte, Joseph O. Deasy, Jue Jiang, Nancy Lee, Sudharsan Madhavan, Nishant Nadkarni, Lopamudra Nayak, Harini Veeraraghavan, Wei Zhao

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: To track early response to radiotherapy using digital twins, it is crucial to quantify tumor volume and mass changes. Traditional tumor detection methods, particularly in image registration, ...

Construction and Application Study of a Deep Learning-Based Iscout-Guided Precision Radiotherapy Positioning Error Prediction Model for Breast Cancer

Authors: Fangfen Dong, Jiaming Li, Xiaobo Li, Weipei Wang, Zhixin Wang, Bing Wu, Benhua Xu, Yong Yang, Yifa Zhao

Affiliation: Department of Radiation Oncology, Fujian Medical University Union Hospital/Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors/Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematologi, Zhangpu County Hospital, School of Medical Imaging, Fujian Medical University

Abstract Preview: Purpose: To explore the construction and clinical application value of a deep learning-based positioning error prediction model, providing a reference for optimizing iSCOUT system-guided precision rad...

Contrast-Free Full Intracranial Vessel Geometry Estimation from MRI with Metric Learning-Based Inference

Authors: Zhaoyang Fan, Eric Nguyen, Dan Ruan, Jiayu Xiao

Affiliation: Department of Radiation Oncology, University of California, Los Angeles, Department of Radiology, University of Southern California, University of Southern California

Abstract Preview: Purpose: MR vessel wall imaging (VWI) has been shown to be effective for evaluating intracranial atherosclerosis disease. However, VWI typically also requires an MR angiography (MRA) in the same imagi...

Convergence Speed Advantages of a Machine Learning Assisted Framework in IMRT Fluence Map Optimization – a Comparison Study Using Multiple Convergence Criteria

Authors: Yang Sheng, Qingrong Jackie Wu, Qiuwen Wu, Xin Wu, Dongrong Yang

Affiliation: Duke University Medical Center

Abstract Preview: Purpose: Convergence speed is crucial for an optimizer. Faster convergence leads to better solutions with fewer iterations and less time. Recently, a machine learning (ML)-assisted framework employing...

Deep Learning Aided Oropharyngeal Cancer Autoplanning

Authors: Mark Bowers, Gabriel Carrizo, Jimmy Caudell, Vladimir Feygelman, Kevin Greco, Christian Hahn, Jihye Koo, Kujtim Latifi, Fredrik Lofman, Jacopo Parvizi, Muqeem Qayyum, Caleb Sawyer

Affiliation: RaySearch Laboratories, Moffitt Cancer Center

Abstract Preview: Purpose: Head and neck (H&N) radiotherapy planning is complex, with multiple competing objectives. We endeavored to improve efficiency of planning by developing a deep learning (DL) model trained to p...

Deep Learning Based Filter with Back-Projection Operator for CT Reconstruction

Authors: Justus Adamson, Mu Chen, Ke Lu, Zhenyu Yang, Fang-Fang Yin, Rihui Zhang, Yaogong Zhang, Haipeng Zhao, Haiming Zhu, Yuchun Zhu

Affiliation: Shanghai Dacheng Medical Technology, Duke University, Medical Physics Graduate Program, Duke Kunshan University, Duke Kunshan University, The First People's Hospital of Kunshan

Abstract Preview: Purpose: In filtered back-projection (FBP) reconstruction, conventional filters often reduce noise at the expense of high-frequency details, leading to structural details loss. To address this limitat...

Deep Learning-Based Auto Segmentation of Oars in Head and Neck Radiation Therapy

Authors: Laila A Gharzai, Bharat B Mittal, Poonam Yadav

Affiliation: Northwestern Feinberg School of Medicine, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Northwestern University Feinberg School of Medicine

Abstract Preview: Purpose: Multiple studies have shown the increasing role of deep learning in segmenting regions of interest. This work presents the feasibility of auto-segmenting the critical structures for head and ...

Deep Learning-Based Auto-Segmentation in Cervical High-Dose-Rate Brachytherapy with Clinical Considerations

Authors: Benjamin Haibe-Kains, Ruiyan Ni, Alexandra Rink

Affiliation: Department of Medical Biophysics, University of Toronto, University Health Network

Abstract Preview: Purpose: Accurate auto-segmentation for targets and organs-at-risk (OARs) using deep learning reduces the delineating time in radiotherapy. In high-dose-rate brachytherapy, specific clinical criteria ...

Deep Learning-Based Categorization of Brain Tumours Using Brain MRI : Advancing Precision Medicine in Neuroimaging

Authors: William F.B Igoniye, Belema Manuel, Christopher F. Njeh, O Ray-offor

Affiliation: Indiana University School of Medicine, Department of Radiation Oncology, Department of Radiology, University of Port Harcourt Teaching Hospital

Abstract Preview: Purpose: The accurate and efficient categorization of brain tumors is essential for effective treatment planning and improved patient outcomes. Current MRI-based diagnostic methods are time-intensive ...

Deep Learning-Based Denoising for Template Matching in Real-Time Tumor Tracking Using Kv Scattered X-Ray Imaging

Authors: Weikang Ai, Xiaoyu Hu, Xun Jia, Kai Yang, Yuncheng Zhong

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Massachusetts General Hospital, Department of Biomedical Engineering, Johns Hopkins University, Johns Hopkins University

Abstract Preview: Purpose: Real-time tumor tracking is critically important for respiratory motion management for lung cancer radiotherapy. A previously proposed application of a photon counting detector involves measu...

Deep Learning-Based Multileaf Collimator Sequence Prediction for Automated VMAT Treatment Planning in Pancreatic Cancer

Authors: Zixu Guan, Takahiro Iwai, Takashi Mizowaki, Mitsuhiro Nakamura, Michio Yoshimura

Affiliation: Kyoto University, Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University

Abstract Preview: Purpose:
The goal of this study is to develop a fully automated treatment planning approach for VMAT in pancreatic cancer that can convert patient anatomy into LINAC machine parameters. In this wor...

Deep Learning-Based Plan Quality Prediction for Gamma Knife Radiosurgery of Brain Metastases

Authors: Chih-Wei Chang, Runyu Jiang, Mark Korpics, Yuan Shao, Aranee Sivananthan, Zhen Tian, Ralph Weichselbaum, Xiaofeng Yang, Aubrey Zhang, Xiaoman Zhang

Affiliation: Department of Radiation & Cellular Oncology, University of Chicago, University of Chicago, Department of Physics, University of Chicago, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University, School of Public Health, University of Illinois Chicago

Abstract Preview: Purpose: Gamma Knife (GK) plan quality can vary significantly among planners, even for cases handled by the same planner. Although plan quality metrics such as coverage, selectivity, and gradient inde...

Deep Learning-Driven Comparative Analysis of CNN-Based Architectures and High-Order Vision Mamba U-Net (H-vMUNet) for MRI-Based Brain Tumor Segmentation

Authors: Sang Hee Ahn, Nalee Kim, Do Hoon Lim

Affiliation: Samsung Medical Center, Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine

Abstract Preview: Purpose: MRI offers superior soft-tissue contrast, aiding tumor localization and segmentation in radiation therapy, which traditionally relies on oncologists' expertise. This study compares CNN-based ...

Deep-Learning Convolutional Neural Network-Based Breast Cancer Localization for Mammographic Images: A Study on Simulated and Clinical Images

Authors: Xiaoyu Duan, Xiang Li, Wenbo Wan, Lei Zhang, Yiwen Zhang

Affiliation: Duke University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Breast screening has been proved to reduce breast cancer mortality by early detection and treatment for patients. Mammography is the most common and widely used technique for breast cancer sc...

Determine Noise Weighting Factor in Photon-Counting CT Via Deep Learning for Personalized Noise Reduction

Authors: Xinhui Duan, Roderick W. McColl, Mi-Ae Park, Liqiang Ren, Gary Xu, Kuan Zhang, Yue Zhang

Affiliation: UT Southwestern Medical Center, Department of Radiology, UT Southwestern Medical Center, Imaging Services, UT Southwestern Medical Center

Abstract Preview: Purpose:
Image-based deep-learning noise-reduction techniques have been developed for photon-counting CT (PCCT) to improve image quality with reduced radiation dose. The denoising strength is typic...

Developing an AI-Driven Predictor for Forecasting Treatment Outcomes in Patients with Early-Stage Breast Cancer

Authors: Lucy Jiang, Chengyu Shi

Affiliation: Department of Radiation Oncology, City of Hope Orange County, Amity Regional High School (10th Grade)

Abstract Preview: Purpose: Early-stage breast cancer is common among females, with typically high local tumor control rates (LCR). Brachytherapy is a common way to achieve LCR following surgery. However, the patients m...

Development of Foundation Model for Analysis of Prostate Cancer with Mpmri

Authors: Ahmad Algohary, Adrian Breto, Quadre Emery, Radka Stoyanova

Affiliation: University of Miami, Department of Radiation Oncology, University of Miami

Abstract Preview: Purpose:
To develop a foundation model (U-Found) for multiparametric MRI (mpMRI) of the prostate by using self-supervised learning to prove the feasibility of a prostate-oriented foundation model u...

Development of a Deep Learning Model for Accurate Brain Dose Prediction in Multi-Target Stereotactic Radiosurgery Plan Evaluation

Authors: Wenchao Cao, Yingxuan Chen, Haisong Liu, Wenyin Shi, Wentao Wang, Lydia J. Wilson, Zhenghao Xiao

Affiliation: Thomas Jefferson University

Abstract Preview: Purpose: Multi-target stereotactic radiosurgery (SRS) planning poses challenges due to complex geometries, small target volumes, and steep dose gradients. Achieving a balance between target coverage a...

Development of an Orthogonal X-Ray Projections-Guided Cascading Volumetric Reconstruction and Tumor-Tracking Model for Adaptive Radiotherapy

Authors: Penghao Gao, Zejun Jiang, Huazhong Shu, Linlin Wang, Gongsen Zhang, Jian Zhu

Affiliation: Laboratory of Image Science and Technology, Key Laboratory of Computer Network and Information Integration, Southeast University, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Artificial Intelligence Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences

Abstract Preview: Purpose: We propose a cascading framework for time-varying anatomical volumetric reconstruction and tumor-tracking, guided by onboard orthogonal-view X-ray projections.
Methods: We employe multiple...

Dual-Branch Attention-Driven Network for Enhanced Sparse-View CBCT Reconstruction Using Planning CT As Prior Knowledge

Authors: Xiaoyi Dai, Manju Liu, Weiwei Sang, Pulin Sun, Fan Xia, Zhenyu Yang, Fang-Fang Yin, Chulong Zhang, Rihui Zhang

Affiliation: Jiahui International Hospital, Radiation Oncology, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose:
Current deep learning-based sparse-view CBCT reconstruction methods are prone to hallucinatory artifacts, as they rely on inferred image details that may not correspond to true anatomical ...

Dual-Domain Reconstruction Network for Nonstop Gated CBCT Imaging: Application in Respiratory Gating Ablative Radiotherapy for Pancreatic Cancer

Authors: Sean L. Berry, Weixing Cai, Laura I. Cervino, Yabo Fu, Daphna Gelblum, Wendy B. Harris, Xiuxiu He, Licheng Kuo, Tianfang Li, Xiang Li, Jean M. Moran, Boris Mueller, Huiqiao Xie, Mitchell Yu, Hao Zhang

Affiliation: Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Gating ablative radiotherapy for pancreatic cancer accounts for tumor movement due to respiration and typically requires 5, 15, or 25 fractions. Pretreatment imaging verification is essential...

Enhanced Lung Function Assessment through Machine Learning Analysis of 4DCT Subregional Respiratory Dynamics

Authors: Jing Cai, Zhi Chen, Hong Ge, Yu-Hua Huang, Bing Li, Zihan Li, Ge Ren

Affiliation: Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital

Abstract Preview: Purpose: Algorithms based on subregional respiratory dynamics (SRD) capture spatiotemporal heterogeneity in the ventilation process, though rely on empirical modelings to map surrogate ventilation. Gi...

Enhanced Pelvic Organ Segmentation Using LLM-Driven Prompts for Prostate Cancer Low-Dose-Rate Brachytherapy

Authors: Yang Lei, Tian Liu, Ren-Dih Sheu, Meysam Tavakoli, Jing Wang, Kaida Yang, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai, Department of Radiation Oncology, Emory University

Abstract Preview: Purpose:
The study aimed to improve target and organ at risk (OAR) segmentation in low-dose-rate brachytherapy (LDR-BT) for prostate cancer treatment, by integrating clinical guidelines into deep l...

Enhancing Proton Treatment and Mitigating Radiation-Induced Lung Injury Using a Novel Cycle Diffusion Approach for Lung Ventilation Estimation

Authors: Yang Lei, Haibo Lin, Tian Liu, Charles B. Simone, Shouyi Wei, Ajay Zheng

Affiliation: Icahn School of Medicine at Mount Sinai, New York Proton Center

Abstract Preview: Purpose: Radiation-induced lung injury (RILI), encompassing pneumonitis and fibrosis, represents a critical dose-limiting factor in lung cancer radiation therapy. Variability in treatment outcomes is ...

Enhancing T2-Weighted Brain MRI Resolution across Orientations Using AI-Based Volumetric Reconstruction

Authors: Mengqi Shen, Meghna Trivedi, Tony J.C. Wang, Andy (Yuanguang) Xu, Yading Yuan

Affiliation: Columbia University Medical Center, Dept of Med Hematology & Oncology, Data Science Institute at Columbia University, Columbia University Irving Medical Center, Department of Radiation Oncology, Columbia University Irving Medical Center

Abstract Preview: Purpose: T2-weighted (T2w) images are critical for identifying pathological changes due to their superior contrast in differentiating tissue types. However, they often lack detailed anatomical resolut...

Evaluating the Impact of Contour Variability on the Effectiveness of Deep Learning Features in Head and Neck Imaging

Authors: Hania A. Al-Hallaq, Xuxin Chen, Anees H. Dhabaan, Elahheh (Ella) Salari, Xiaofeng Yang

Affiliation: Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose:
Radiomics image analysis could lead to the development of predictive signatures and personalized radiotherapy treatments. However, variations in delineation are known to affect hand-crafte...

Evaluation of AI-Generated Synthetic 4DCT from 3DCT for Radiotherapy Planning

Authors: Shinichiro Mori, Isabella Pfeiffer, Chester R. Ramsey, Alexander Usynin

Affiliation: Thompson Proton Center, National Institutes for Quantum Science and Technology, Thompson Cancer Survival Center

Abstract Preview: Purpose: Four-dimensional CT imaging (4DCT) has become a standard tool for managing respiratory motion in radiation therapy. However, many treatment delivery systems and most diagnostic CT scanners la...

Evaluation of Daily Respiratory Pattern from a Single Free-Breathing Cone Beam CT Scan

Authors: Weixing Cai, Laura I. Cervino, Yabo Fu, Xiuxiu He, Tianfang Li, Xiang Li, Hao Zhang

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose:
This work aims to develop an innovative technique to evaluate patients’ daily respiratory pattern using three-dimensional (3D) deformation vector fields (DVF) derived from a free-breathing...

Explainable AI with Attention Gates for Transparent and Interpretable Lung Radiotherapy Plan Evaluation

Authors: Jeffrey D. Bradley, Steven J. Feigenberg, Cole Friedes, Yin Gao, Xun Jia, Kevin Teo, Lingshu Yin, Jennifer Wei Zou

Affiliation: Department of Radiation Oncology, University of Pennsylvania, Johns Hopkins University

Abstract Preview: Purpose: Understanding how physicians evaluate plans is critical for automatic planning and ensuring consistent, high-quality care. While deep-learning models excel in complex decision-making, the lac...

Fast 3D Scintillation Dosimetry Using Single View Deep Learning Reconstruction

Authors: Louis Archambault, Nicolas Drouin, Alexis Horik, Simon Thibault

Affiliation: Département de Physique, de Génie Physique et D'optique, et Centre de Recherche sur le Cancer, Université Laval, Département de Physique, de Génie Physique et D'optique, et Centre d'optique, photonique et laser, Université Laval

Abstract Preview: Purpose: To develop a novel type of real-time 3D dosimeter for the quality assurance of linear accelerators used in external beam radiotherapy.
Methods: An experimental setup was constructed using ...

Feasibility of Using a Convolutional Neural Network to Predict Physician Evaluation of Synthetic Medical Images

Authors: Sofia Beer, Menal Bhandari, Alec Block, Nader Darwish, Joseph Dingillo, Sebastien A. Gros, Hyejoo Kang, Andrew Keeler, Rajkumar Kettimuthu, Jason Patrick Luce, Ha Nguyen, John C. Roeske, George K. Thiruvathukal, Austin Yunker

Affiliation: Data Science and Learning Division, Argonne National Laboratory, Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Stritch School of Medicine Loyola University Chicago, Cardinal Bernardin Cancer Center, Loyola University Chicago, Department of Computer Science, Loyola University of Chicago

Abstract Preview: Purpose: Artificial intelligence (AI) generated synthetic medical images are seeing increased use in radiology and radiation oncology. Physician observer studies are an ideal way to evaluate the usabi...

Fine-Tuning AI-Based Generative Models for Small-Sample Glioma MRI Generation.

Authors: Xiangli Cui, Chunyan Fu, Man Hu, Wanli Huo, Jingyu Liu, Jianguang Zhang, Yingying Zhang, Shanyang Zhao

Affiliation: Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, the Zhejiang-New Zealand Joint Vision-Based Intelligent Metrology Laboratory, College of Information Engineering, China Jiliang University, Departments of Radiation Oncology, Zibo Wanjie Cancer Hospital, Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Department of Oncology, Xiangya Hospital, Central South University, College of Information Engineering, China Jiliang University, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences

Abstract Preview: Purpose: To quantify the impact of fine-tuning strategies for pre-trained AI image generation models on glioma MRI image quality and observer performance, and to determine the optimal fine-tuning conf...

Foundation Model-Augmented Learning for Automatic Delineation in Precision Radiotherapy

Authors: Xianjin Dai, PhD, Michael Gensheimer, Praveenbalaji Rajendran, Lei Xing, Yong Yang

Affiliation: Department of Radiation Oncology, Stanford University, Massachusetts General Hospital, Harvard Medical School

Abstract Preview: Purpose: Recent advances in the automatic delineation of radiotherapy treatment targets, which incorporate linguistic clinical data extracted by large language models (LLMs) into traditional visual-on...

From Noisy Signals to Accurate Maps: Transforming Look-Locker MRI with an Intelligent T₁ Estimation

Authors: Prabhu C. Acharya, Hassan Bagher-Ebadian, Stephen L. Brown, James R. Ewing, Mohammad M. Ghassemi, Benjamin Movsas, Farzan Siddiqui, Kundan S Thind

Affiliation: Michigan State University, Oakland University, Henry Ford Health

Abstract Preview: Purpose: Accurate T1 quantification using T One by Multiple Read Out Pulse (TOMROP) sequences is essential for physiological assessments in dynamic-contrast-enhanced (DCE) MRI and T1 mapping studies. ...

Generalized 2D Cine Multi-Modal MRI-Based Dynamic Volumetric Reconstruction Using Motion-Aligned Implicit Neural Network with Spatial Prior Embedding

Authors: Ming Chao, Karyn A Goodman, Yang Lei, Tian Liu, Jing Wang, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai

Abstract Preview: Purpose: Real-time volumetric MRI is essential for motion management in MRI-guided radiotherapy (MRIgRT), yet acquiring high-quality 3D images remains challenging due to time constraints and motion ar...

Generating 3D Brain in Volume (BRAVO) Images Using Attention-Gated Conditional Gan (AGC-GAN)

Authors: Nan Li, Shouping Xu, Gaolong Zhang, Xuerong Zhang

Affiliation: Department of Radiation Oncology, HeBei YiZhou proton center, School of Physics, Beihang University, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College

Abstract Preview: Purpose:
The 3D BRAVO sequence is an advanced magnetic resonance (MR) technique that allows for image reconstruction at any angle. It offers 1 mm gapless scanning and has a high signal-to-noise rat...

Generating Brain Pseudo-CT from PET-Only Images Using Deep Learning Method

Authors: Pouya Azarbar, Nima Kasraie, Mahsa Shahrbabki Mofrad, Peyman Sheikhzadeh

Affiliation: UT Southwestern Medical Center, Shahid Beheshti University of Medical science, Imam Khomeini Hospital Complex,Tehran University of Medical Sciences, Tehran University of Medical Science

Abstract Preview: Purpose: PET imaging become crucial in diagnosing and managing various diseases, but its key limitation is the lack of detailed anatomical information. Integrating CT-scans with PET images enhances cl...

Generation of Virtual Lung PET Images from CT Data Via Deep Learning for Accelerated Tumor Detection and Preliminary Diagnosis

Authors: Pouya Azarbar, Nima Kasraie, Peyman Sheikhzadeh

Affiliation: UT Southwestern Medical Center, Shahid Beheshti University of Medical science, Imam Khomeini Hospital Complex,Tehran University of Medical Sciences

Abstract Preview: Purpose: Positron Emission Tomography (PET) is crucial for diagnosing and monitoring diseases due to its functional imaging capabilities. However, its high cost, significant radiation exposure, and li...

Geometric Alignment of MV-CBCT and Dual-Layer Kv-CBCT Projections Using Deep Learning

Authors: Ross I. Berbeco, Vera Birrer, Raphael Bruegger, Pablo Corral Arroyo, Roshanak Etemadpour, Dianne M. Ferguson, Rony Fueglistaller, Thomas C. Harris, Yue-Houng Hu, Matthew W. Jacobson, Mathias Lehmann, Nicholas Lowther, Daniel Morf, Marios Myronakis

Affiliation: Brigham and Women's Hospital, Harvard Medial School, Dana-Farber Cancer Institute, Department of Radiation Oncology, Dana Farber/Brigham and Women's Cancer Center, Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Brigham and Womens Hospital, Dana Farber Cancer Institute, Harvard Medical School, Brigham and Women's Hospital, Varian Imaging Laboratory, Dana-Farber Cancer Institute

Abstract Preview: Purpose: Applications of combined kV-MV CBCT include metal artifact correction and material identification. Difficulties arise, however, when the imagers have misaligned geometric perspectives of the ...

Graph Neural Network with Long Short-Term Memory for CT-Based Macrotrabecular-Massive Hepatocellular Carcinoma Diagnosis

Authors: Enhui Chang, Yunfei Dong, Yifei Hao, Chengliang Jin, Shengsheng Lai, Yi Long, Mengni Wu, Yulu Wu, Ruimeng Yang, Zhenyu Yang, Yue Yuan, Lei Zhang, Wanli Zhang, Yaogong Zhang

Affiliation: Duke Kunshan University, Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Macrotrabecular-Massive Hepatocellular Carcinoma (MTM-HCC) is one type of liver cancer showed minimum image signature for accurate non-invasive diagnosis. This study aims to develop and evalu...

Hands-on AI Education for Radiology Residents

Authors: Wilfred R Furtado, Gary Y. Ge, James Lee, Jie Zhang

Affiliation: University of Kentucky

Abstract Preview: Purpose: Despite advancements in Artificial Intelligence (AI) and its growing role in clinical practices like radiology, formal AI education remains limited in medical training. This gap contributes t...

High-Quality Patchnet (HQ-PatchNet) for Synthetic CT Generation in Head & Neck Imaging

Authors: So Hyun Ahn, Chris Beltran, Byongsu Choi, Jeong Heon Kim, Jin Sung Kim, Bo Lu, Justin Chunjoo Park, Bongyong Song, Jun Tan

Affiliation: Mayo Clinic, Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Ewha Medical Research Institute, Ewha Womans University College of Medicine, UC San Diego, Yonsei University College of Medicine

Abstract Preview: Purpose:
Cone-beam computed tomography (CBCT) is widely used in IGRT for patient positioning but suffers from low resolution and poor soft tissue contrast. Synthetic CT (sCT) generated from CBCT ad...

High-Resolution Limited-Angle CBCT Image Reconstruction for Non-Coplanar Radiation Therapy Via Dual-Domain Ordered-Subset Neural Representation with Prior Embedding (DDOS-NeRP)

Authors: Yu Gao, Lei Xing, Siqi Ye

Affiliation: Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose:
Limited-angle CBCT (LA-CBCT) scans are often the only option for non-coplanar radiation therapy to prevent potential mechanical collisions. However, the consecutive angular occlusion of pr...

Hyperpolarized 13c Image Superresolution with Deep Learning

Authors: Kofi M. Deh, Tamas Jozsa, Tsang-Wei Tu

Affiliation: Cranfield University, Howard University Hospital, Howard University

Abstract Preview: Purpose: To enhance the quality of hyperpolarized (HP) 13C magnetic resonance images by integrating deep learning with perfusion modeling.
Methods: A convolutional neural network (CNN) and a superr...

Image Quality Enhancement for Transrectal Ultrasound Imaging of Prostate Brachytherapy Using Deep Learning: A Needle Eraser

Authors: Hilary P Bagshaw, Mark K Buyyounouski, Serdar Charyyev, Xianjin Dai, PhD, Yu Gao, Thomas R. Niedermayr, Lei Xing

Affiliation: Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose: Real-time transrectal ultrasound imaging is the gold standard for needle placement and treatment planning of real-time based-ultrasound-based high dose-rate (HDR) prostate brachytherapy. Cumu...

Image Similarity Measurement Based on Handcrafted and Deep Learning Radiomics

Authors: John Ginn, Chenlu Qin, Deshan Yang

Affiliation: Duke University, Department of Radiation Oncology, Duke University

Abstract Preview: Purpose: Clinical implementation of auto-segmentation tools has been hindered by poor interpretability and generalizability of AI models, necessitating the development of automated contour quality ass...

Impact of Transfer Learning on Estimation of Intravoxel Incoherent Motion Parameters in the Liver

Authors: Marissa Brown, Geoffrey D. Clarke, Luke Norton

Affiliation: University of Texas Health Science Center at San Antonio

Abstract Preview: Purpose: To evaluate how different learning strategies affect convolutional neural network (CNN) estimates of the liver's intravoxel incoherent motion (IVIM) parameters.
Methods: A 3-stage U-Net wa...

Implementing a Learning-to-Optimize Machine Learning Framework to Accelerate VMAT Treatment Planning Optimization for Prostate Cancer

Authors: Ara Alexandrian, Sadiki Daniel

Affiliation: Louisiana State University, Mary Bird Perkins Cancer Center

Abstract Preview: Purpose: To develop a learning-to-optimize machine learning model that accelerates optimization in VMAT treatment planning by training on prostate patient data.
Methods: A treatment plan dataset of...

Improve the Risk Prediction of Radiation-Induced Esophagitis in Lung IMRT By an Anisotropic Dose Convolution Neural Network

Authors: Ibtisam Almajnooni, Elisabeth Weiss, Lulin Yuan

Affiliation: Virginia Commonwealth University

Abstract Preview: Purpose: We developed a deep learning neural network (DLNN) to predict the risk of radiation-induced esophagitis (RE) during lung cancer radiation therapy based on the spatial dose distribution, for t...

Improving Mammography Diagnosis Accuracy through Global Context and Local Lesion Integration

Authors: Minbin Chen, Xiaoyi Dai, Xiaoyu Duan, Chunhao Wang, Fan Xia, Zhenyu Yang, Fang-Fang Yin, Chulong Zhang, Rihui Zhang

Affiliation: Duke University, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University, The First People's Hospital of Kunshan

Abstract Preview: Purpose: Deep learning (DL)-based mammography diagnosis presents unique challenges, as accurate interpretation requires both global breast condition analysis and local lesion structural information. E...

Improving Segmentation Precision in Prostate Cancer Adaptive Radiotherapy with the Intentional Deep Overfit Learning (IDOL) Approach

Authors: Seungryong Cho, Donghyeok Choi, Joonil Hwang, Byung-Hee Kang, Jin Sung Kim, Eungman Lee, Younghee Park

Affiliation: Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, KAIST, Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Ewha Womans University of Medicine

Abstract Preview: Purpose: Radiation therapy (RT) is critical for cancer treatment, but changes in tumor size and shape during therapy challenge precise dose delivery. Adaptive radiation therapy (ART) addresses these v...

Improving the Robustness of AI-Based Detection and Segmentation for Brain Metastasis By Optimizing Loss Function and Multi-Dataset Training

Authors: Omar Awad, Alfredo Enrique Echeverria, Issam M. El Naqa, Daniel Allan Hamstra, Yiding Han, Ryan Lafratta, Abdallah Sherif Radwan Mohamed, Piyush Pathak, Zaid Ali Siddiqui, Baozhou Sun, Vincent Ugarte

Affiliation: H. Lee Moffitt Cancer Center, Harris Health, Baylor College of Medicine

Abstract Preview: Purpose:
Accurate detection and segmentation of brain metastases are critical for diagnosis, treatment planning, and follow-up imaging but are challenging due to labor-intensive manual assessments ...

Incorporating Cyclic Group Equivariance into Deep Learning for Reliable Reconstruction of Rotationally Symmetric Tomography Systems

Authors: Fang-Fang Yin, Lei Zhang, Yaogong Zhang

Affiliation: Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Rotational symmetry is an inherent property of many tomography systems (e.g., CT, PET, SPECT), arising from the circular arrangement or rotation of detectors. This study revisits the image re...

Innovative Deep Learning Network for Overall Survival Prediction for NSCLC: Outperforming Pre-Trained Models VGG16 and ResNet50

Authors: Ryan Alden, Tithi Biswas, Kaushik Halder, Felix Maria-Joseph, Michael Mix, Rihan Podder, Tarun Kanti Podder

Affiliation: SUNY Upstate Medical University, IIT-Roorkee, University of Florida

Abstract Preview: Purpose: Early-stage NSCLC patients undergoing SBRT often die due to intercurrent illnesses. However, prediction of overall survival (OS) remains crucial due to the risk of disease recurrence. This st...

Integrating Foundation Model with Self-Supervised Learning for Brain Lesion Segmentation with Multimodal and Diverse MRI Datasets

Authors: Zong Fan, Fan Lam, Hua Li, Rita Huan-Ting Peng, Yuan Yang

Affiliation: University of Illinois at Urbana Champaign, University of Illinois at Urbana-Champaign, Washington University School of Medicine, University of Illinois Urbana-Champaign

Abstract Preview: Purpose: Accurate lesion segmentation in MRI is critical for early diagnosis, treatment planning, and monitoring disease progression in various neurological disorders. Cross-site MRI data can alleviat...

Integrating Neuroanatomic Knowledge in Clinical Target Volumes for Glioma Patients Using Deep Learning

Authors: Ali Ajdari, Thomas R. Bortfeld, Christopher Bridge, Gregory Buti, Marcela Giovenco, Fredrik Lofman, Gregory C. Sharp, Helen A Shih, Tugba Yilmaz

Affiliation: Massachusetts General Hospital, RaySearch Laboratories, Department Of Radiation Oncology, Massachusetts General Hospital (MGH), Massachusetts General Hospital & Harvard Medical School, Massachusetts General Hospital and Harvard Medical School

Abstract Preview: Purpose: Defining radiation target volumes with accurate integration of the neuroanatomy is one of the major difficulties in designing glioma treatments. We developed a deep learning network for norma...

Inter-Machine Harmonization in Echocardiographic Videos for Predicting Left Ventricular Ejection Fraction

Authors: Akihiro Haga, Ren Iwasaki, Kenya Kusunose, Makoto Miyake, Kenji Moriuchi, Yasuharu Takeda, Hidekazu Tanaka, Hirotsugu Yamada

Affiliation: Department of Cardiovascular Medicine, Nephrology, and Neurology Graduate School of Medicine, University of the Ryukyus, Graduate School of Biomedical Sciences, Tokushima University, Tokushima university, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Department of Cardiology, Tenri Hospital, Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Division of Heart Failure, Department of Heart Failure and Transplant, National Cerebral and Cardiovascular Center

Abstract Preview: Purpose: Device dependency is a significant challenge in medical AI, potentially limiting generalization performance. This study aimed to develop a robust deep learning model for predicting left ventr...

Interpretable Deep Learning Predicts Metastasis-Free Survival (MFS) from Conventional Imaging for Oligometastatic Castration-Sensitive Prostate Cancer (omCSPC) Using Multi-Modality PSMA PET and CT Imaging.

Authors: Yufeng Cao, Luigi Marchionni, William Silva Mendes, Cem Onal, Lei Ren, Amit Sawant, Nicole L Simone, Philip Sutera, Phuoc Tran

Affiliation: University of Maryland School of Medicine, 9Department of Radiation Oncology, Thomas Jefferson University, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, University of Maryland, Baltimore, Baskent University Faculty of Medicine, Department of Radiation Oncology, Department of Radiation Oncology, University of Maryland School of Medicine, Maryland University Baltimore, 8Department of Pathology and Laboratory Medicine, Weill Cornell Medicine

Abstract Preview: Purpose: This study aims to predict 2-yr Metastasis-free survival (MFS) for oligometastatic castration-sensitive prostate cancer (omCSPC) patients treated by metastasis-directed therapy (MDT) by devel...

Mask-Based Synthetic Contrast-Enhanced CT Generation for Advancing Data Limited Segmentation on Cardiac Substructure

Authors: Jin Sung Kim, Chanwoong Lee, Young Hun Yoon

Affiliation: Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine

Abstract Preview: Purpose: Chest contrast-enhanced CT (CECT) serves as a valuable tool for cardiac imaging, but its lack of detailed anatomical visualization limits its utility in segmentation tasks. While CECT offers ...

Mitigating Data-Driven Uncertainty in Machine Learning-Based Radiotherapy Outcome Prediction

Authors: Ali Ajdari, Alice Bondi, Thomas R. Bortfeld, Gregory Buti, Xinru Chen, Zhongxing Liao, Antony John Lomax, Ting Xu

Affiliation: The University of Texas MD Anderson Cancer Center, Department Of Radiation Oncology, Massachusetts General Hospital (MGH), Massachusetts General Hospital & Harvard Medical School, Paul Scherrer Institut, ETH Zurich

Abstract Preview: Title: Addressing Imaging and Biomarker-driven Uncertainty in Machine Learning-based Radiotherapy Outcome Prediction
Alice Bondi, Gregory Buti, Antony Lomax, Thomas Bortfeld, Xinru Chen, Ting Xu, Z...

Muilt-Instance Learning Model with 2D and 3D Features Representation and Transformer-Based Prediction for FDG PET Tumor Chemoradiation Response of La-NSCLC

Authors: Stephen R. Bowen, Chunyan Duan, Daniel S. Hippe, Qiantuo Liu, Jiajie Wang, Shouyi Wang, Faisal Yaseen, Han Zhou

Affiliation: Tongji University, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Fred Hutchinson Cancer Center, University of Texas at Arlington

Abstract Preview: Purpose: Predicting the effects of the spatial-temporal tumor response to chemoradiation can assist in adjusting radiation dose and support clinical decision-making in radiotherapy. A multi-instance l...

Multi-Mechanism CNN and Long Short-Term Memory Fusion Model for Improved CT-Based Thyroid Cancer Diagnosis

Authors: Yunfei Dong, Dongyang Guo, Jiongli Pan, Tao Peng, Caiyin Tang, Zhenyu Yang, Fang-Fang Yin, Lei Zhang, Tianyi Zhang, Yaogong Zhang

Affiliation: Duke Kunshan University, Department of Radiology, Taizhou People’s Hospital Affiliated to Nanjing Medical University, School of Future Science and Engineering, Soochow University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: This study aims to improve the accuracy of CT-based diagnosis of thyroid cancer by developing a hybrid model that integrates Convolutional Neural Networks (CNNs) with Long Short-Term Memory (...

Multi-Variat, Multi-Model, and Multi-Patient: From Pure Feasibility to Generalizability in Machine Learning Outcome Prediction Model-Based Treatment Plan Optimization

Authors: Martin Frank, Oliver Jäkel, Niklas Wahl

Affiliation: Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Karlsruhe Institute of Technology (KIT)

Abstract Preview: Purpose: Machine learning (ML) models on normal tissue complication and tumor control probability ((N)TCP) exploiting e.g. dosiomic and radiomic features are playing an increasingly important role in ...

Neural Implicit K-Space for Accelerated Patient-Specific Non-Cartesian MRI Reconstruction

Authors: Daniel O Connor, Mary Feng, Hui Lin, Hengjie Liu, Xin Miao, Michael Ohliger, Jess E. Scholey, Ke Sheng, DI Xu, Wensha Yang, Yang Yang

Affiliation: UCSF, University of California, Los Angeles, Department of Radiation Oncology, University of California San Francisco, Department of Radiation Oncology, University of California, San Francisco, Department of Radiation Oncology, University of California at San Francisco, University of San Francisco, Department of Radiology, University of California, San Francisco, University of California San Francisco, Siemens Medical Solutions USA Inc.

Abstract Preview: Purpose: The scanning time for a fully sampled MRI is lengthy. Compressed sensing (CS) has been developed to minimize image artifacts in accelerated scans, but the required iterative reconstruction is...

Non-Contact Blood Pressure Estimation Using Remote Photoplethysmography Signals Extracted from Facial Video: A Deep Learning Approach

Authors: Mavlonbek Khomidov, Jong-Ha Lee

Affiliation: Department of Biomedical Engineering, Keimyung University, Department of Computer Engineering, Keimyung University

Abstract Preview: Purpose: In this research, we aim to estimate blood pressure using remote photoplethysmography (rPPG) signal extracted from facial video. This method provides non-invasive and contactless, continuous ...

PET Imaging and Novel Cardiac Radiomics to Predict Pre-Radiotherapy Cardiac Conditions for Lung Cancer Patients Undergoing Radiotherapy.

Authors: Wookjin Choi, Michael Dichmann, Adam Dicker, Nilanjan Haldar, Yingcui Jia, Nicole L Simone, Eugene Storozynsky, Yevgeniy Vinogradskiy, Maria Werner-Wasik

Affiliation: Thomas Jefferson University, 9Department of Radiation Oncology, Thomas Jefferson University

Abstract Preview: Purpose: Cardiotoxicity remains a significant limitation for lung cancer patients treated with radiotherapy. Pre-radiotherapy cardiac conditions increase the probability of patients developing cardiot...

Pancrea-Seg-Net: A Semi-Supervised Deep Learning Framework for Pancreatic Tumor and Vessel Segmentation

Authors: Manju Liu, Ning Wen, Fuhua Yan, Yanzhao Yang, Zhenyu Yang, Haoran Zhang, Lei Zhang, Yajiao Zhang

Affiliation: Department of Radiology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy where precise segmentation of tumors and adjacent vessels is crucial for effective treatment planning. This study dev...

Patient-Specific Deep Reinforcement Learning Framework for Automatic Replanning in Proton Therapy for Head-and-Neck Cancer

Authors: Malvern Madondo, Mark McDonald, Zhen Tian, Christopher Valdes, Ralph Weichselbaum, Xiaofeng Yang, David Yu, Jun Zhou

Affiliation: Department of Radiation & Cellular Oncology, University of Chicago, University of Chicago, Emory University, Department of Radiology, University of Chicago, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Head-and-neck (HN) cancer patients often experience significant anatomical changes during treatment course. Proton therapy, particularly intensity-modulated proton therapy (IMPT), is sensitiv...

Patient-Specific Treatment Plan Optimization through Intentional Deep Overfit Learning As a Warm Start for Longitudinal Adaptive Radiotherapy

Authors: Wouter Crijns, Frederik Maes, Loes Vandenbroucke, Liesbeth Vandewinckele

Affiliation: Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven; Department of Radiation Oncology, UZ Leuven, Department ESAT/PSI, KU Leuven; Medical Imaging Research Center, UZ Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven

Abstract Preview: Purpose: To explore intentional deep overfit learning (IDOL) to exploit the initial treatment plan to predict an adaptive radiotherapy plan.
Methods: A conditional generative adversarial network is...

Performance Analysis of Various Deep Learning Networks for Classification of True and False Positive 18F-PSMA Findings

Authors: Vasiliki Chatzipavlidou, Ilias Gatos, George C. Kagadis, Theodoros Kalathas, Paraskevi Katsakiori, Anna Makridou, Dimitris N. Mihailidis, Nikos Papathanasiou, Ioanna Stamouli, Stavros Tsantis

Affiliation: Theageneio Hospital, University of Pennsylvania, University of Patras

Abstract Preview: Purpose: To compare the performance of multiple deep learning (DL) networks, including DenseNet201, InceptionV3, MobileNetV3, EfficientNetB2, NASNetMobile, VGG19, ResNet50, and Xception, in classifyin...

Performance Evaluation of CT-Based Lung Tumor Classification Deep Learning Algorithms Under Centralized and Federated Learning Frameworks

Authors: Yifei Hao, Chengliang Jin, Wenxuan Li, Bing Luo, Tao Peng, Yulu Wu, Fang-Fang Yin, Yue Yuan, Lei Zhang, Ruojun Zhou

Affiliation: School of Future Science and Engineering, Soochow University, Electrical and Computer Engineering Graduate Program, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Federated learning is a patient privacy-protecting technique that has recently been applied in the medical field. This study aims to evaluate the performance of several deep learning networks...

Physics and Geometry Input-Based Neural Network Dose Engine

Authors: Ricardo Garcia Santiago, Narges Miri, Daryl P. Nazareth, Ankit Pant, Mukund Seshadri

Affiliation: Roswell Park Comprehensive Cancer Center

Abstract Preview: Purpose: To develop a transformer-based deep learning network framework for predicting VMAT dose distributions. This can provide fast and efficient calculations with accuracies potentially comparable ...

Posterior-Mean Diffusion Model for Realistic PET Image Reconstruction

Authors: Osama R. Mawlawi, Yiran Sun

Affiliation: RICE University, UT MD Anderson Cancer Center

Abstract Preview: Purpose: Conventional PET reconstruction methods often produce noisy images with artifacts due to data/model mismatches and inconsistencies. Recently, deep learning-based conditional denoising diffusi...

Predicting Elective Pelvic Nodal Volumes with Deep Learning: A Tool to Facilitate Peer Review

Authors: Brian M. Anderson, Shiva K. Das, Meagan Foster, Anirudh Karunaker, Lawrence B. Marks, Lukasz Mazur, Michael Repka

Affiliation: UNC Chapel HIll, University of North Carolina at Chapel Hill, UNC School of Medicine, University of North Carolina

Abstract Preview: Purpose: Development of a peer review segmentation check system to identify deviations in physician contours of standard risk pelvic lymph nodes in patients receiving radiation therapy for prostate an...

Predicting Pathological Complete Response to Neoadjuvant Chemotherapy for Breast Cancer at Early Time Points Using a Two-Stage Dual-Task Deep Learning Strategy

Authors: Bowen Jing, Jing Wang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Medical images acquired at multiple time points during neoadjuvant chemotherapy allow physicians to assess patients’ responses and personalize treatment plans accordingly. Studies from the I-...

Quality and Performance Advantages of a Machine Learning-Assisted Framework for IMRT Fluence Map Optimization

Authors: Yang Sheng, Qingrong Jackie Wu, Qiuwen Wu, Xin Wu, Dongrong Yang

Affiliation: Duke University Medical Center

Abstract Preview: Purpose: Gradient-based optimization is the standard approach for IMRT fluence map optimization (FMO). Recently, a machine learning (ML)-assisted framework using a one-layer neural network was propose...

Real-Time Proton and Carbon Ion Monte Carlo Dose Calculation through GPU-Acceleration and DL-Based Denoising Algorithms

Authors: Yankui Chang, Shijun Li, Xi Pei, Ripeng Wang, Xuanhe Wang, X. George Xu, Qing Zhang, Jingfang Zhao

Affiliation: University of Science and Technology of China, Shanghai proton and heavy ion center, School of Nuclear Science and Technology, University of Science and Technology of China, Anhui Wisdom Technology Co., Ltd.

Abstract Preview: Purpose:
This paper describes disruptive methods using both GPU-based MC simulation and deep-learning (DL)-based MC denoising algorithms, as well as clinical tests involving more than 560 patient p...

Reinforcement Learning Based Machine Parameter Optimization for Two-Arc Prostate VMAT Planning

Authors: William T. Hrinivich, Junghoon Lee, Lina Mekki

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Department of Biomedical Engineering, Johns Hopkins University, Johns Hopkins University

Abstract Preview: Purpose: Volumetric modulated arc therapy (VMAT) planning is a computationally expensive process. In this work, we propose a reinforcement learning (RL) framework to automatically optimize dose rate a...

Segmentation Regularized Registration Training Improves Multi-Domain Generalization of Deformable Image Registration for MR-Guided Prostate Radiotherapy

Authors: Lando S. Bosma, Victoria Brennan, Nicolas Cote, ChengCheng Gui, Nima Hassan Rezaeian, Jue Jiang, Sudharsan Madhavan, Josiah Simeth, Neelam Tyagi, Harini Veeraraghavan, Michael J Zelefsky

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, NYU Langone Health, University Medical Center Utrecht, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Deep learning-based deformable image registration (DIR) models often lack robustness when applied to datasets with differing imaging characteristics. We aimed to (1) improve registration netw...

Simulating Realistic Digital Phantoms for Virtual Clinical Trials in Radiology and Radiation Oncology Using a Deep-Learning Based Conditional Denoising Diffusion Probabilistic Model (c-DDPM)

Authors: Matthew Brown, Yushi Chang, Jinhyuk Choi, William Silva Mendes, Lei Ren, Aman Sangal, William Paul Segars, Phuoc Tran, Hualiang Zhong

Affiliation: University of Maryland School of Medicine, Department of Radiation Oncology, University of Maryland School of Medicine, Carl E. Ravin Advanced Imaging Laboratories and Center for Virtual Imaging Trials, Duke University Medical Center, Department of Radiation Oncology, Medical College of Wisconsin

Abstract Preview: Purpose: Digital phantoms like XCAT are essential for imaging and treatment optimization in radiology and radiation oncology. However, the lack of realistic textures (HU distribution) in XCAT limits i...

Simultaneous Synthesis of Lung Perfusion and Ventilation Images from CT Using a Dual-Decoder Residual Attention Network for Lung Disease Diagnosis

Authors: Li-Sheng Geng, David Huang, Haoze Li, Xi Liu, Meng Wang, Tianyu Xiong, Ruijie Yang, Weifang Zhang, Meixin Zhao

Affiliation: School of Physics, Beihang University, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Department of Radiation Oncology, Peking University Third Hospital, Department of Nuclear Medicine, Peking University Third Hospital, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: This study aimed to develop a deep learning-based framework for simultaneously generating lung perfusion and ventilation images from three-dimensional computed tomography (3D CT) images.
M...

Small but Mighty: A Lightweight and Computationally Efficient Model for Deformable Image Registration

Authors: Hengjie Liu, Dan Ruan, Ke Sheng, DI Xu

Affiliation: Physics and Biology in Medicine, University of California, Los Angeles, Department of Radiation Oncology, University of California, San Francisco, Department of Radiation Oncology, University of California at San Francisco, Department of Radiation Oncology, University of California, Los Angeles

Abstract Preview: Purpose:
State-of-the-art deep learning-based deformable image registration often uses large, complex models directly adapted from computer vision tasks but achieves only comparable performance to ...

Task-Specific Deep-Neural-Network Architecture Optimization for CBCT Scatter Correction

Authors: Hoyeon Lee

Affiliation: University of Hong Kong

Abstract Preview: Purpose: Deep-learning approaches are widely investigated for Cone-Beam CT (CBCT) scatter correction to improve the quality of the linear-accelerator mounted CBCT. This study aims to optimize the deep...

Ukan Architecture for Voxel-Level Dose Prediction in Radiotherapy

Authors: Lu Jiang, Ke Sheng

Affiliation: Department of Radiation Oncology, University of California at San Francisco, Department of Radiation Oncology, University of California, San Francisco

Abstract Preview: Purpose:
Conventional radiotherapy treatment planning is guided by a set of generic objectives that are unspecific to patient anatomy. Treatment planning thus heavily relies on the planner’s experi...

Uncertainty-Guided Cross-Domain Adaptation for Unsupervised Medical Image Segmentation

Authors: Yunxiang Li, Weiguo Lu, Xiaoxue Qian, Hua-Chieh Shao, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Curating high-quality, labeled data for medical image segmentation can be challenging and costly, considering the existence of various image domains with differing modalities/protocols. Cr...

Unidose: A Universal Framework for IMRT Dose Prediction

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Zi Yang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose: Dose prediction (DP) is essential in guiding radiotherapy planning. However, current DP models for intensity-modulated radiation therapy (IMRT) primarily rely on fixed-beam orientations and a...

Universal Anatomical Mapping and Patient-Specific Prior Implicit Neural Representation for MRI Super-Resolution

Authors: Jie Deng, Yunxiang Li, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Magnetic Resonance Imaging (MRI) has exceptional soft tissue contrast and an essential role in radiotherapy. The introduction of clinical MR-LINACs has enabled adaptive radiotherapy (ART) usi...

Unsupervised Task-Specific Histology Image Stain Standardization and Crypt Detection for Evaluating Normal Tissue Flash Irradiation Response

Authors: Muhammad Ramish Ashraf, Kerriann Casey, Suparna Dutt, Jie Fu, Edward Elliot Graves, Xuejun Gu, Hao Jiang, Brianna Caroline Lau, Billy W Loo, Weiguo Lu, Rakesh Manjappa, Stavros Melemenidis, Erinn Bruno Rankin, Lawrie Skinner, Luis Armando Soto, Murat Surucu, Vignesh Viswanathan, Zi Yang, Amy Shu-Jung Yu

Affiliation: Department of Radiation Oncology, University of Washington and Fred Hutchinson Cancer Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine, Department of Comparative Medicine, Stanford University School of Medicine, Department of Radiation Oncology, Stanford University Cancer Center

Abstract Preview: Purpose: The intestine is a classical preclinical model for studying radiation injury, and histological quantification of intestinal crypts is a key assay for assessing this response. However, substan...

Uprightvision: A Deep-Learning Toolkit for Transforming Supine Anatomy to Upright

Authors: Ming Dong, Carri K. Glide-Hurst, Behzad Hejrati, Joshua Pan, Yuhao Yan

Affiliation: Department of Computer Science, Wayne State University, Departments of Human Oncology and Medical Physics, University of Wisconsin-Madison, Department of Human Oncology, University of Wisconsin-Madison

Abstract Preview: Purpose: Upright patient positioners and vertical CT reduce tumor motion and stabilize internal anatomy during treatment delivery. Yet, to fully exploit the advantages of upright, translation of stand...

Using Multiple Sequences MRI for Synthesizing CT Based on a Deep Learning Approach

Authors: Jie Hu, Nan Li, Chuanbin Xie, Shouping Xu, Xinlei Xu, Gaolong Zhang, Zhilei Zhang

Affiliation: School of Physics, Beihang University, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Radiation Oncology, the First Medical Center of the People's Liberation Army General Hospital, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, Peopleʼs Republic of China, Department of Radiation Oncology, School of Physics, Beihang University, Beijing, 102206, Peopleʼs Republic of China

Abstract Preview: Purpose: This study aims to synthesize CT images for MRI-only radiation therapy using a deep learning approach that integrates information from the T1- and T2-weighted MRI sequence.
Methods: 97 hea...

VMAT Machine Parameter Optimization Using Policy Gradient Reinforcement Learning

Authors: Avinash Mudireddy, Nathan Shaffer, Joel J. St-Aubin

Affiliation: University of Iowa

Abstract Preview: Purpose: This work demonstrates preliminary results in training a reinforcement learning (RL) network to perform VMAT machine parameter optimization.
Methods: We implemented a policy gradient RL al...