Authors: Jingyuan Chen, Sheng Li, Tianming Liu, Wei Liu, Zhengliang Liu, Zhong Liu, Daniel Ma, Samir H. Patel, Guangya Wang, Yunze Yang
Affiliation: University of Miami, Mayo Clinic, School of Data Science, University of Virginia, School of Computing, University of Georgia, Department of Radiation Oncology, Mayo Clinic, Institute of Western China Economic Research, Southwestern University of Finance and Economics
Abstract Preview: Purpose:
Traditional patient outcome analyses relied heavily on conventional statistical models that primarily elucidate correlation rather than causal relationships. In this study, we aim to ident...
Authors: Zachary Buchwald, Chih-Wei Chang, Richard L.J. Qiu, Mojtaba Safari, Hui-Kuo Shu, Lisa Sudmeier, Xiaofeng Yang, David Yu, Xiaohan Yuan
Affiliation: Emory University and Winship Cancer Institute, Emory University, Georgia Institute of Technology, Department of Radiation Oncology and Winship Cancer Institute, Emory University
Abstract Preview: Purpose: This study proposes a novel vision-language model (VLM) to predict survival outcomes in glioblastoma (GBM) patients. By integrating multimodal MRI data and clinical information, the proposed ...
Authors: ISAAC Amoah, Jackie Austin, Charlotte Block, Kaylee Brilz, Dylan Bui, Andrew E. Ekpenyong, Jayce Hughes, Pralhad Itani, Natasha Ratnapradipa, Sara Strom, Jacob Woolf
Affiliation: Creighton University
Abstract Preview: Purpose:
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults, with a median survival of approximately 15 months despite the current standard of care, which includes s...
Authors: Shae Gans, Carri K. Glide-Hurst, Mark Pankuch, Chase Ruff, Niek Schreuder, Nicholas R. Summerfield, Yuhao Yan
Affiliation: Departments of Human Oncology and Medical Physics, University of Wisconsin-Madison, Northwestern Medicine Proton Center, Northwestern Medicine Chicago Proton Center, Leo Cancer Care
Abstract Preview: Purpose: Novel upright patient positioners coupled with diagnostic-quality vertical CT at treatment isocenter introduce a significant opportunity for improved image-guided particle therapy. Treating p...
Authors: Zachery Colbert, Matthew Foote, Michael Huo, Mark Pinkham, Prabhakar Ramachandran, Mihir Shanker
Affiliation: Radiation Oncology, Princess Alexandra Hospital, Ipswich Road, Princess Alexandra Hospital
Abstract Preview: Purpose: The study aimed to develop and implement deep learning-based autosegmentation models for the autosegmentation of four key tumor types: brain metastasis, pituitary adenoma, vestibular schwanno...
Authors: Beth Bradshaw Ghavidel, Benyamin Khajetash, Yang Lei, Meysam Tavakoli
Affiliation: Icahn School of Medicine at Mount Sinai, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Emory University, Department of Radiation Oncology, Emory University
Abstract Preview: Purpose: Pancreatic cancer is among the most aggressive types of cancer, with a five-year survival rate of approximately 10%. Recent studies show that radiomics and deep learning (DL)-based methods ar...
Authors: Yankun Lang, Lei Ren, Dario B. Rodrigues
Affiliation: University of Maryland School of Medicine, Department of Radiation Oncology, University of Maryland School of Medicine
Abstract Preview: Purpose:
HTP of microwave (MW) phased-array systems determine MW antenna settings to maximize energy absorption (SAR in W/kg) in tumor. Conventional HTP algorithms calculate SAR based on electromag...
Authors: Steve Braunstein, Angela Jakary, Hui Lin, Bo Liu, Janine Lupo, Tiffany Ngan, Ke Sheng, Nate Tran
Affiliation: Radiation Oncology, University of California San Francisco, Graduate Program in Bioengineering, University of California San Francisco-UC Berkeley, Department of Radiation Oncology, University of California San Francisco, Department of Radiology and Biomedical Imaging, University of California San Francisco, Department of Radiation Oncology, University of California, San Francisco
Abstract Preview: Purpose: Current RT clinical target volumes (CTVs) for Glioblastoma (GBM) employ 2cm isotropic expansions of gross tumor volumes. However, studies showed patients still experience progression beyond t...
Authors: Evan Calabrese, Hangjie Ji, Kyle J. Lafata, Casey Y. Lee, Eugene Vaios, Chunhao Wang, Lana Wang, Zhenyu Yang, Jingtong Zhao
Affiliation: Duke University, Department of Radiation Oncology, Duke University, Duke Kunshan University, North Carolina State University
Abstract Preview: Purpose: To develop a biologically guided deep learning (DL) model for predicting brain metastasis(BM) local control outcomes following stereotactic radiosurgery (SRS). By integrating pre-SRS MR image...
Authors: Yunfei Dong, Dongyang Guo, Zhenyu Yang, Fang-Fang Yin, Zeyu Zhang
Affiliation: Duke University, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University
Abstract Preview: Purpose:
To develop a Biomechanically Guided Deep Learning Registration Network (BG-DRNet) that improves both accuracy and physiological plausibility in liver image registration. While cone-beam CT...
Authors: Xuelian Chen, John Ginn, Zhuhong Li, Kaizhong Shi, Chunhao Wang, Jianliang Wang, Chuan Wu, Zhenyu Yang, Fang-Fang Yin, Jingtong Zhao
Affiliation: The First People's Hospital of Kunshan, Duke University, Medical Physics Graduate Program, Duke Kunshan University, Duke Kunshan University, Department of Radiation Oncology, Duke Kunshan University
Abstract Preview: Purpose: Developing deep learning-based models for accurate automated breast cancer diagnosis from mammography presents significant challenges due to the small size and subtle nature of breast lesions...
Authors: Fangfen Dong, Jiaming Li, Xiaobo Li, Weipei Wang, Zhixin Wang, Bing Wu, Benhua Xu, Yong Yang, Yifa Zhao
Affiliation: Department of Radiation Oncology, Fujian Medical University Union Hospital/Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors/Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematologi, Zhangpu County Hospital, School of Medical Imaging, Fujian Medical University
Abstract Preview: Purpose: To explore the construction and clinical application value of a deep learning-based positioning error prediction model, providing a reference for optimizing iSCOUT system-guided precision rad...
Authors: Laila A Gharzai, Bharat B Mittal, Poonam Yadav
Affiliation: Northwestern Feinberg School of Medicine, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Northwestern University Feinberg School of Medicine
Abstract Preview: Purpose: Multiple studies have shown the increasing role of deep learning in segmenting regions of interest. This work presents the feasibility of auto-segmenting the critical structures for head and ...
Authors: William F.B Igoniye, Belema Manuel, Christopher F. Njeh, O Ray-offor
Affiliation: Indiana University School of Medicine, Department of Radiation Oncology, Department of Radiology, University of Port Harcourt Teaching Hospital
Abstract Preview: Purpose: The accurate and efficient categorization of brain tumors is essential for effective treatment planning and improved patient outcomes. Current MRI-based diagnostic methods are time-intensive ...
Authors: Hamdah Alanazi, Silvia Pella
Affiliation: FAU, Florida Atlantic University
Abstract Preview: Purpose: The appearance of breast cancer in the global list of most common cancers worldwide requires
research for ultimate treatment approaches including radiation therapy to reduce deaths from br...
Authors: Sang Hee Ahn, Nalee Kim, Do Hoon Lim
Affiliation: Samsung Medical Center, Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine
Abstract Preview: Purpose: MRI offers superior soft-tissue contrast, aiding tumor localization and segmentation in radiation therapy, which traditionally relies on oncologists' expertise. This study compares CNN-based ...
Authors: Stephanie Bennett, Sean L. Berry, Caroline M. Colbert, Dustin J. Jacqmin, James A. Kavanaugh, Minsun Kim, Maura L. Kirk, Emily Kruse, Benjamin Li, Mu-Han Lin, Lindsey A. Olsen, Jose Carlos Pichardo, Justin R. Roper, Leah K. Schubert, Chunhao Wang, Sua Yoo
Affiliation: University of Wisconsin, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Department of Radiation & Cellular Oncology, University of Chicago, Abington - Jefferson Health, Mayo Clinic, University of Washington, University of Colorado Health, University of Colorado Denver, Department of Radiation Oncology, University of Washington and Fred Hutch Cancer Center, Duke University, Pichardo Physics LLC, Department of Radiation Oncology, UT Southwestern Medical Center, Department of Radiation Oncology and Winship Cancer Institute, Emory University
Abstract Preview: Purpose: As clinics in lower- and middle-income countries (LMICs) transition to advanced radiotherapy techniques like IMRT and VMAT, gaps in training can result in suboptimal planning. To help support...
Authors: Lucy Jiang, Chengyu Shi
Affiliation: Department of Radiation Oncology, City of Hope Orange County, Amity Regional High School (10th Grade)
Abstract Preview: Purpose: Early-stage breast cancer is common among females, with typically high local tumor control rates (LCR). Brachytherapy is a common way to achieve LCR following surgery. However, the patients m...
Authors: Lian Duan, Stephen F. Kry, Hunter S. Mehrens, Christine Peterson, Paige A. Taylor
Affiliation: The University of Texas MD Anderson Cancer Center, UT MD Anderson Cancer Center
Abstract Preview: Purpose: To develop predictive models for IROC SRS head phantom audits and to identify important factors influencing institutional performance.
Methods: The IROC SRS head phantom includes two TLDs ...
Authors: Ameer Elaimy, Theodore Lawrence, Charles S. Mayo, Seyyedeh Azar Oliaei Motlagh, Benjamin S. Rosen
Affiliation: University of Michigan
Abstract Preview: Purpose: To analyze the impact of clinical features on short-term survival, toxicity, and poor outcomes in HCC patients treated with SBRT,using automated data aggregation and enhanced algorithms with ...
Authors: Yang Lei, Haibo Lin, Tian Liu, Charles B. Simone, Shouyi Wei, Ajay Zheng
Affiliation: Icahn School of Medicine at Mount Sinai, New York Proton Center
Abstract Preview: Purpose: Radiation-induced lung injury (RILI), encompassing pneumonitis and fibrosis, represents a critical dose-limiting factor in lung cancer radiation therapy. Variability in treatment outcomes is ...
Authors: Li Chen, Shouliang Ding, Xiaoyan Huang, Lecheng Jia, Hua Li, Hongdong Liu, Yanfei Liu, Zun Piao, Guangyu Wang
Affiliation: State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Shenzhen United Imaging Research Institute of Innovative Medical Equipment
Abstract Preview: Purpose: Optimal radiotherapy planning is challenging, influenced by anatomical factors such as surrounding organs and tumor characteristics, which complicate dose distribution and target coverage. Wh...
Authors: Christopher G. Ainsley, Pradeep Bhetwal, Yingxuan Chen, Wookjin Choi, Vimal K. Desai, Karen E. Mooney, Adam Mueller, Hamidreza Nourzadeh, Yevgeniy Vinogradskiy, Maria Werner-Wasik
Affiliation: Thomas Jefferson University
Abstract Preview: Purpose: MR-guided adaptive radiotherapy (MRgART) has demonstrated improved outcomes for patients with pancreatic cancer. However, the time-consuming re-segmentation of targets and organs-at-risk (OAR...
Authors: Asma Amjad, Renae Conlin, Eric S. Paulson, Christina M. Sarosiek
Affiliation: Department of Radiation Oncology, Medical College of Wisconsin
Abstract Preview: Purpose: In an effort to improve contouring accuracy for abdominal MR guided online adaptive radiotherapy (MRgOART), patient-specific deep learning-based auto-segmentation (PS-DLAS) has been proposed....
Authors: Theodore Higgins Arsenault, Kyle O'Carroll, Christian Erik Petersen, Alex T. Price, Meiying Xing
Affiliation: University Hospitals Seidman Cancer Center
Abstract Preview: Purpose: To assess the performance of various supervised learning modelsβ ability to predict binary classification of radiomic data for head and neck (H&N) cancer treatment outcomes.
Methods: Using...
Authors: Hania A. Al-Hallaq, Xuxin Chen, Anees H. Dhabaan, Elahheh (Ella) Salari, Xiaofeng Yang
Affiliation: Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University
Abstract Preview: Purpose:
Radiomics image analysis could lead to the development of predictive signatures and personalized radiotherapy treatments. However, variations in delineation are known to affect hand-crafte...
Authors: Chloe Min Seo Choi, Nikhil Mankuzhy, Aneesh Rangnekar, Andreas Rimner, Maria Thor, Harini Veeraraghavan, Abraham Wu
Affiliation: Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center
Abstract Preview: Purpose: Cardiac substructure irradiation predisposes patients for poor outcomes in thoracic radiation therapy. A deep learning model was developed to segment the cardiac substructures invariant to co...
Authors: Wilfred R Furtado, Gary Y. Ge, James Lee, Jie Zhang
Affiliation: University of Kentucky
Abstract Preview: Purpose: Despite advancements in Artificial Intelligence (AI) and its growing role in clinical practices like radiology, formal AI education remains limited in medical training. This gap contributes t...
Authors: Mark Ashamalla, Renee Farrell, Jinkoo Kim, Kartik Mani, Xin Qian, Samuel Ryu, Yizhou Zhao
Affiliation: Stony Brook Medicine, Stony Brook University Hospital
Abstract Preview: Purpose: Adaptive planning is increasingly used in head and neck radiation therapy due to factors like tumor response or changes in patient anatomy. However, methods such as resimulation or offline re...
Authors: Yufeng Cao, Luigi Marchionni, William Silva Mendes, Cem Onal, Lei Ren, Amit Sawant, Nicole L Simone, Philip Sutera, Phuoc Tran
Affiliation: University of Maryland School of Medicine, 9Department of Radiation Oncology, Thomas Jefferson University, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, University of Maryland, Baltimore, Baskent University Faculty of Medicine, Department of Radiation Oncology, Department of Radiation Oncology, University of Maryland School of Medicine, Maryland University Baltimore, 8Department of Pathology and Laboratory Medicine, Weill Cornell Medicine
Abstract Preview: Purpose: This study aims to predict 2-yr Metastasis-free survival (MFS) for oligometastatic castration-sensitive prostate cancer (omCSPC) patients treated by metastasis-directed therapy (MDT) by devel...
Authors: Clint Bahler, Ruchika Reddy Chimmula, Harrison Louis Love, Oluwaseyi Oderinde, Courtney Yong
Affiliation: Purdue University, Department of Urology, Indiana University School of Medicine, Advanced Molecular Imaging in Radiotherapy (AdMIRe) Research Laboratory, School of Health Sciences, Purdue University
Abstract Preview: Purpose: Prostate cancer (PCa) is a common malignancy in men, and predicting biochemical recurrence (BCR) is crucial for guiding treatment decisions. Integrating multimodal data, including clinical, i...
Authors: William N. Duggar, Amirhossein Eskorouchi, Haifeng Wang
Affiliation: Mississippi State University, University of Mississippi Medical Center
Abstract Preview: Purpose:
Extracapsular extension (ECE) in lymph nodes represents a critical prognostic factor in head and neck squamous cell carcinoma (HNSCC), bearing important implications for staging, treatment...
Authors: John Byun, Steven D Chang, Mingli Chen, Cynthia Chuang, Xuejun Gu, Melanie Hayden Gephart, Yusuke Hori, Hao Jiang, Mahdieh Kazemimoghadam, Fred Lam, Gordon Li, Lianli Liu, Weiguo Lu, David Park, Erqi Pollom, Elham Rahimy, Deyaaldeen Abu Reesh, Scott Soltys, Gregory Szalkowski, Lei Wang, Qingying Wang, Zi Yang, Xianghua Ye, Kangning Zhang
Affiliation: Department of Radiation Oncology, Stanford University, Department of Neurosurgery, Stanford University, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose: Accurate prediction of pain relief is crucial in determining the clinical effectiveness of Stereotactic body radiotherapy (SBRT) regimen for spine metastases. We propose a deep-learning frame...
Authors: Rico Castillo, Katherine Gonzalez, Casey C. Heirman, Kyle J. Lafata, Casey Y. Lee, Xiang Li, Yvonne M Mowery, Yvonne M Mowery, Daniel Murphy, Allison Pittman, Ashlyn G. Rickard
Affiliation: Duke University, Department of Radiation Oncology, Duke University, University of Pittsburgh
Abstract Preview: Purpose: To evaluate the ability of a deep learning model to identify pathomic features in lymph nodes of preclinical head and neck squamous cell carcinoma (HNSCC) models as surrogates for predicting ...
Authors: Waleed Mutlaq Almutairi, Ke Colin Huang, Vishwas Mukundan, Christopher F. Njeh, Oluwaseyi Oderinde, Yong Yue
Affiliation: Purdue University, Indiana University School of Medicine, Department of Radiation Oncology, Advanced Molecular Imaging in Radiotherapy (AdMIRe) Research Laboratory, Purdue University, West Lafayette, Indiana, USA
Abstract Preview: Purpose:
This study aimed to develop a machine learning (ML) model for early prediction of chemoradiotherapy (CRT) response in order to enhance personalized treatment selection for oral or orophary...
Authors: Ali Ajdari, Alice Bondi, Thomas R. Bortfeld, Gregory Buti, Xinru Chen, Zhongxing Liao, Antony John Lomax, Ting Xu
Affiliation: The University of Texas MD Anderson Cancer Center, Department Of Radiation Oncology, Massachusetts General Hospital (MGH), Massachusetts General Hospital & Harvard Medical School, Paul Scherrer Institut, ETH Zurich
Abstract Preview: Title: Addressing Imaging and Biomarker-driven Uncertainty in Machine Learning-based Radiotherapy Outcome Prediction
Alice Bondi, Gregory Buti, Antony Lomax, Thomas Bortfeld, Xinru Chen, Ting Xu, Z...
Authors: Smith Apisarnthanarax, Stephen R. Bowen, Sunan Cui, Jie Fu, Clemens Grassberger, Yulun He, Yejin Kim, Matthew J. Nyflot, Sharon Pai
Affiliation: Department of Radiation Oncology, University of Washington and Fred Hutchinson Cancer Center, Department of Radiation Oncology, University of Washington, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Department of Physics, University of Washington, University of Washington and Fred Hutchinson Cancer Center
Abstract Preview: Purpose: 99mTc-sulfur colloid SPECT imaging enables quantitative assessment of voxel-wise liver function in patients with hepatocellular carcinoma (HCC). Accurately predicting post-radiotherapy (RT) l...
Authors: Martin Frank, Oliver JΓ€kel, Niklas Wahl
Affiliation: Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Karlsruhe Institute of Technology (KIT)
Abstract Preview: Purpose: Machine learning (ML) models on normal tissue complication and tumor control probability ((N)TCP) exploiting e.g. dosiomic and radiomic features are playing an increasingly important role in ...
Authors: Daniel O Connor, Mary Feng, Hui Lin, Hengjie Liu, Xin Miao, Michael Ohliger, Jess E. Scholey, Ke Sheng, DI Xu, Wensha Yang, Yang Yang
Affiliation: UCSF, University of California, Los Angeles, Department of Radiation Oncology, University of California San Francisco, Department of Radiation Oncology, University of California, San Francisco, Department of Radiation Oncology, University of California at San Francisco, University of San Francisco, Department of Radiology, University of California, San Francisco, University of California San Francisco, Siemens Medical Solutions USA Inc.
Abstract Preview: Purpose: The scanning time for a fully sampled MRI is lengthy. Compressed sensing (CS) has been developed to minimize image artifacts in accelerated scans, but the required iterative reconstruction is...
Authors: Zhongjie Lu
Affiliation: Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine
Abstract Preview: Purpose: Patients with locally-advanced head and neck squamous cell carcinomas(HNSCCs), particularly those related to human papillomavirus(HPV), often achieve good locoregional control(LRC), yet they ...
Authors: Hilary P Bagshaw, Mark K Buyyounouski, Xianjin Dai, PhD, Praveenbalaji Rajendran, Lei Xing, Yong Yang
Affiliation: Department of Radiation Oncology, Stanford University, Massachusetts General Hospital, Harvard Medical School
Abstract Preview: Purpose: Artificial intelligence (AI)-driven methods have transformed dose prediction, streamlining the automation of radiotherapy treatment planning. However, traditional approaches depend exclusivel...
Authors: John Ginn, Zhuoyun Huang, Yongbok Kim, Ke Lu, Chunhao Wang, Yibo Xie, Zhenyu Yang, Jingtong Zhao
Affiliation: Duke University, Duke Kunshan University
Abstract Preview: Purpose: This study aims to develop and validate a machine learning model for predicting V60%, a critical dosimetric metric in LINAC-based Single-Isocenter-Multiple-Targets (SIMT) stereotactic radiosu...
Authors: Rafe A. McBeth, Kuancheng Wang, Ledi Wang
Affiliation: Department of Radiation Oncology, University of Pennsylvania, Georgia Institute of Technology, University of Pennsylvania
Abstract Preview: Purpose:
The integration of AI in clinical workflows presents unprecedented opportunities to enhance treatment quality in radiation oncology, yet it also demands innovative approaches to address th...
Authors: Rajeev K. Badkul, Ronald C Chen, Ying Hou, Harold Li, Chaoqiong Ma, Jufri Setianegara
Affiliation: Department of Radiation Oncology, University of Kansas Medical Center
Abstract Preview: Purpose:
Postimplant urinary toxicity is common in prostate low-dose-rate (LDR) brachytherapy. We developed a machine learning (ML) model to explore the correlation between spatial dose distributio...
Authors: Kim Creach, Kim Howard, Julius G. Ojwang, Richard A. Shaw, Neelu Soni
Affiliation: Mercy Hospital Springfield
Abstract Preview: Purpose: To present a standardized MRI-CT hybrid workflow for High-Dose-Rate (HDR) Image-Guided Adaptive Brachytherapy (IGBT) in cervical cancer, aligned with AAPM TG-303, as a model to assist with im...
Authors: Michael Cummings, Olga M. Dona Lemus, Hana Mekdash, Tyler Moran, Alexander R Podgorsak, Sean M. Tanny, Matthew J. Webster, Lexiang Yang, Dandan Zheng, Yuwei Zhou, Xiaofeng Zhu
Affiliation: Department of Radiation Oncology, University of Rochester, University of Miami, Inova Schar Cancer Institute, University of Rochester
Abstract Preview: Purpose: oART is revolutionizing radiotherapy by allowing treatment plans to be adjusted based on daily imaging, improving targeting precision and potentially enhancing patient outcomes. However, its ...
Authors: Rebecca Lamoureux, Zahra (Zara) Razi, Zachary Whipps
Affiliation: University of New Mexico Hospital
Abstract Preview: Purpose: Patient mispositioning in CT imaging contributes to inconsistent radiation dose delivery and suboptimal image quality, impacting patient safety and diagnostic outcomes. This study evaluates a...
Authors: Ara Alexandrian, Jessica Ashford, Jean-Guy Belliveau, Allison Dalton, Nathan Dobranski, Krystal M. Kirby, Garrett M. Pitcher, David E. Solis, Hamlet Spears, Angela M. Stam, Sotirios Stathakis, Jason Stevens, Rodney J. Sullivan, Sean Xavier Sullivan, Natalie N. Viscariello
Affiliation: Louisiana State University, Mary Bird Perkins Cancer Center, The University of Alabama at Birmingham, University of Alabama at Birmingham
Abstract Preview: Purpose: To improve retrospective risk analysis in radiation oncology by leveraging Large Language Models (LLMs) to extract richly annotated data from unstructured clinical incident reports.
Method...
Authors: Michael Baine, Yang Lei, Yu Lei, Ruirui Liu, Tian Liu, Jing Wang
Affiliation: Icahn School of Medicine at Mount Sinai, University of Nebraska Medical Center
Abstract Preview: Purpose: Accurate 3D deformable registration of MRI and ultrasound (US) is essential for real-time image guidance during high-dose-rate (HDR) prostate brachytherapy. However, MRI-US registration of th...