Search Submissions 🔎

Results for "learning segmentation": 78 found

A Dual Energy CT-Guided Intelligent Radiation Therapy Platform

Authors: Jiayi Chen, Manju Liu, Ning Wen, Haoran Zhang, Yibin Zhang

Affiliation: Department of Radiation Oncology, Ruijin Hospital, Department of Radiology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Duke Kunshan University, Department of Radiation Oncology,Ruijin Hospital, Shanghai Jiao Tong University School of Medicine

Abstract Preview: Purpose: This study introduces a novel Dual Energy CT (DECT)-Guided Intelligent Radiation Therapy (DEIT) platform designed to streamline and optimize the radiotherapy process. The DEIT system combines...

A Hybrid Radiomics-Integrated Machine Learning Framework for Early Identification of Potential Radiation Pneumonitis in Lung Cancer Patients

Authors: Christos Ilioudis, Marios Myronakis, Sotirios Raptis, Kyriaki Theodorou

Affiliation: Medical Physics Department, Medical School, University of Thessaly, Department of Information and Electronic Engineering, International Hellenic University (IHU)

Abstract Preview: Purpose: This study presents a radiomics-driven, machine learning framework developed to predict the possibility of Radiation Pneumonitis (RP), as a side effect of radiation therapy in lung cancer pat...

A SAM-Guided and Match-Based Semi-Supervised Segmentation Framework for Medical Imaging

Authors: Weiguo Lu, Jax Luo, Xiaoxue Qian, Hua-Chieh Shao, Guoping Xu, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, Harvard Medical School

Abstract Preview: Purpose:
Semi-supervised segmentation leverages sparse annotation information to learn rich representations from combined labeled and label-less data for segmentation tasks. This study leverages th...

A Semi-Automated Landmark Identification Framework for Liver MR-CT Image Pairs: Towards a Multi-Modality DIR Benchmark Dataset

Authors: Deshan Yang, Zhendong Zhang

Affiliation: Duke University, Department of Radiation Oncology, Duke University

Abstract Preview: Purpose:
The evaluation of deformable image registration (DIR) algorithms is crucial for improving accuracy and clinical adoption. However, reliable benchmarks, especially for inter-modality regist...

A Window-Level Based Approach for Generating Missing Tissue in CT Scans Using a Transformer-Gan Model

Authors: Mojtaba Behzadipour, Siyong Kim, Mitchell Polizzi, Richard R. Wargo, Lulin Yuan

Affiliation: VCU Health - Department of Radiology, Virginia Commonwealth University

Abstract Preview: Purpose:
The purpose of this study is to develop a method for generating missing tissue in CT scans of patients with large body sizes, where the field of view (FOV) of the scanner fails to capture ...

Advancing Biodosimetry with AI: Detecting Dicentric Chromosomes Using Convolutional Neural Networks

Authors: Adayabalam Balajee, Elijah Berberette, Maria Escalona, Dray Gentry, Chester R. Ramsey, Terri Ryan

Affiliation: ORAU, Thompson Proton Center, University of Tennessee

Abstract Preview: Purpose:
Dicentric chromosomes, characterized by two centromeres on a single chromosome, are key biomarkers in biological dosimetry for quantifying ionizing radiation exposure. However, manual dete...

Advancing Cardiac Sparing with Upright Patient Geometry and Deep Learning

Authors: Shae Gans, Carri K. Glide-Hurst, Mark Pankuch, Chase Ruff, Niek Schreuder, Nicholas R. Summerfield, Yuhao Yan

Affiliation: Departments of Human Oncology and Medical Physics, University of Wisconsin-Madison, Northwestern Medicine Proton Center, Northwestern Medicine Chicago Proton Center, Leo Cancer Care

Abstract Preview: Purpose: Novel upright patient positioners coupled with diagnostic-quality vertical CT at treatment isocenter introduce a significant opportunity for improved image-guided particle therapy. Treating p...

Advancing Deep Segmentation Accuracy in CBCT for Radiotherapy Via Robust Scatter Mitigation: First Results from a Pilot Trial

Authors: Cem Altunbas, Farhang Bayat, Roy Bliley, Rupesh Dotel, Brian Kavanagh, Uttam Pyakurel, Tyler Robin, Ryan Sabounchi

Affiliation: Department of Radiation Oncology, University of Colorado School of Medicine, Taussig Cancer Center, Cleveland Clinic, University of Colorado Anschutz Medical Campus

Abstract Preview: Purpose: Automatic segmentation of anatomical structures in CBCT images is key to enabling dose delivery monitoring and online plan modifications in radiotherapy. However, poor image quality can degra...

Advancing Thoracic Synthetic CT Images with Enhanced Cyclegan for Adaptive Radiotherapy Applications

Authors: Silambarasan Anbumani, Nicolette O'Connell, Eenas A. Omari, Amanda Pan, Eric S. Paulson, Lindsay Puckett, Monica E. Shukla, Dan Thill, Jiaofeng Xu

Affiliation: Elekta Inc, Elekta Limited, Linac House, Department of Radiation Oncology, Medical College of Wisconsin

Abstract Preview: Purpose: Accurate electron density information from on-board imaging is essential for direct dose calculations in adaptive radiotherapy (ART). This study evaluates a deep learning model for thoracic s...

An Advanced Automated Pipeline for Brain Tumor Segmentation on MRI Images in Gamma Knife Radiotherapy

Authors: Zachery Colbert, Matthew Foote, Michael Huo, Mark Pinkham, Prabhakar Ramachandran, Mihir Shanker

Affiliation: Radiation Oncology, Princess Alexandra Hospital, Ipswich Road, Princess Alexandra Hospital

Abstract Preview: Purpose: The study aimed to develop and implement deep learning-based autosegmentation models for the autosegmentation of four key tumor types: brain metastasis, pituitary adenoma, vestibular schwanno...

An Efficient Deep Learning Model with Multi-Scale Integration for Automated Pancreas Segmentation on MR Images

Authors: Jingyun Chen, Yading Yuan

Affiliation: Columbia University Irving Medical Center, Department of Radiation Oncology

Abstract Preview: Purpose: To develop and evaluate the Scale-attention network (SANet) for automated pancreas segmentation on MR images.
Methods: To develop SANet, we extended the classic U-Net design with a dynamic...

Assessing the Risks of Synthetic MRI Data in Deep Learning: A Study on U-Net Segmentation Accuracy

Authors: Chuangxin Chu, Haotian Huang, Tianhao Li, Jingyu Lu, Zhenyu Yang, Fang-Fang Yin, Tianyu Zeng, Chulong Zhang, Yujia Zheng

Affiliation: The Hong Kong Polytechnic University, Nanyang Technological University, Australian National University, Medical Physics Graduate Program, Duke Kunshan University, North China University of Technology, Duke Kunshan University

Abstract Preview: Purpose: Deep learning segmentation models, such as U-Net, rely on high-quality image-segmentation pairs for accurate predictions. However, the recent increasing use of generative networks for creatin...

Augmenting Histopathology Lymphocyte Detection with Gpt-4 in-Context Visual Reasoning

Authors: Kyle J. Lafata, Casey Y. Lee, Xiang Li, Megan K. Russ, Zion Sheng

Affiliation: Duke University, Department of Radiation Oncology, Duke University, Clinical Imaging Physics Group, Department of Radiology, Duke University Health System

Abstract Preview: Purpose:
Traditional deep learning-based cell segmentation models face limitations, such as the need for extensive training data and retraining when encountering new cell types or domains. This stu...

Automated Framework for Predicting Tumour Growth in Vestibular Schwannomas Using Contrast-Enhanced T1-Weighted MRI

Authors: Mehdi Amini, Minerva Becker, Simina Chiriac, Alexandre Cusin, Dimitrios Daskalou, Ghasem Hajianfar, Sophie Neveu, Marcella Pucci, Yazdan Salimi, Pascal Senn, Habib Zaidi

Affiliation: Geneva University Hospital, Division of Radiology, Diagnostic Department, Geneva University Hospitals, Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals

Abstract Preview: Purpose: Personalized prediction of vestibular schwannoma (VS) tumour growth is crucial for guiding patient management decisions toward observation versus intervention. This study proposes an automate...

Automated Full-Body Tumor Segmentation from PET/CT Images

Authors: Austin Castelo, Xinru Chen, Caroline Chung, Laurence Edward Court, Jaganathan A Parameshwaran, Zhan Xu, Jinzhong Yang, Yao Zhao

Affiliation: The University of Texas MD Anderson Cancer Center, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center

Abstract Preview: Purpose:
To develop a deep learning-based segmentation model to automatically delineate tumors from full-body PET/CT images.
Methods:
PET/CT image pairs of 91 patients were collected for this...

Automated IMPT Treatment Planning for CSI: Enhancing Efficiency with Auto-Segmentation and Scripting

Authors: Katja M. Langen, William Andrew LePain, Robert Muiruri, Vivi Nguyen, Mosa Pasha, Roelf L. Slopsema, Alexander Stanforth, Yinan Wang, Mingyao Zhu

Affiliation: Emory Healthcare, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Intensity modulated proton therapy (IMPT) treatment planning for craniospinal irradiation (CSI) is complex and requires extensive effort from the planner. This study aims to enhance planning ...

Automatic Tumor Segmentation and Catheter Detection from MRI for Cervical Cancer Brachytherapy Using Uncertainty-Aware Dual Convolution-Transformer Unet

Authors: Majd Antaki, Rohini Bhatia, Gayoung Kim, Yosef Landman, Junghoon Lee, Akila N. Viswanathan

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Physics and Advanced Development Elekta

Abstract Preview: Purpose: Brachytherapy is a standard radiation therapy approach for cervical cancer, which directly delivers radiation source to the tumor using catheters. Treatment planning requires identification o...

Automating Radiographic Sharp Score Prediction in Rheumatoid Arthritis Using Multistage Deep Learning Methods

Authors: Hajar Moradmand, Lei Ren

Affiliation: University of Maryland School of Medicine, University of Maryland

Abstract Preview: Purpose:
The Sharp-van der Heijde (SvH) score is essential for assessing joint damage in rheumatoid arthritis (RA) from radiographic images. However, manual scoring is time-intensive and prone to v...

Brain Tumor Segmentation from Multi-Parametric MRI with Integrated Evidential Uncertainty Estimation

Authors: Sahaja Acharya, Matthew Ladra, Junghoon Lee, Lina Mekki

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Department of Biomedical Engineering, Johns Hopkins University

Abstract Preview: Purpose: Multi-parametric MRI (mpMRI) is widely used for deep learning (DL)-based automatic segmentation of brain tumors. While multi-contrast images concatenated as channels are typically input to ne...

Clinical Implementation of Automated Contour Quality Assurance in Head and Neck Radiotherapy

Authors: Sam Armstrong, Jamison Louis Brooks, Nicole Johnson, Douglas John Moseley, Cassie Sonnicksen, Erik J. Tryggestad

Affiliation: Mayo Clinic

Abstract Preview: Purpose: To evaluate the feasibility of a shallow learning-based quality assurance (QA) tool designed to assist human reviewers in assessing organ-at-risk (OAR) contours for head and neck radiotherapy...

Clinical Validation of a Deep-Learning Segmentation Tool for Head and Neck Cancer Patients and Thoracic and Abdominal Cancer Patients

Authors: Haijian Chen, Katja M. Langen, William Andrew LePain, Claire Tran, Mingyao Zhu

Affiliation: Emory Healthcare, Emory University, Georgia Institute of Technology

Abstract Preview: Purpose: To validate the performance of a commercial deep-learning segmentation (DLS) tool for head and neck cancer (HNC) and thoracic and abdominal cancer (TAC) by comparing it to manual segmentation...

Comparison of AI-Based and Ants for Longitudinal Deformable Image Registration in Head and Neck Cancer

Authors: Aditya P. Apte, Joseph O. Deasy, Jue Jiang, Nancy Lee, Sudharsan Madhavan, Nishant Nadkarni, Lopamudra Nayak, Harini Veeraraghavan, Wei Zhao

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: To track early response to radiotherapy using digital twins, it is crucial to quantify tumor volume and mass changes. Traditional tumor detection methods, particularly in image registration, ...

Comprehensive Evaluation of Federated Learning Strategies for Head and Neck Tumor Segmentation on PET/CT Images

Authors: Jingyun Chen, Yading Yuan

Affiliation: Columbia University Irving Medical Center, Department of Radiation Oncology

Abstract Preview: Purpose: To evaluate centralized and decentralized strategies for federated head and neck tumor segmentation on PET/CT.
Methods: We utilized training data from the HEad and neCK TumOR segmentation ...

Contrastive Learning and Hybrid CNN-Transformer Model for Unpaired MR Image Synthesis in Acute Cerebral Infarction

Authors: Kota Hirose, Daisuke Kawahara, Jokichi Kawazoe, Yuji Murakami

Affiliation: Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima University

Abstract Preview: Purpose: Synthesizing medical images can address the lack of or unscanned medical images, reducing scanner time and costs. However, paired image scarcity remains a challenge for image synthesis. We pr...

Deep Learning Based Automatic Cerebrovascular Segmentation in Multi-Center TOF-MRA Datasets

Authors: Gayoung Kim, Junghoon Lee

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University

Abstract Preview: Purpose: 3D time-of-flight magnetic resonance angiography (TOF-MRA) is widely used for visualizing cerebrovascular structures. Accurate segmentation of cerebrovascular structures is critical for relia...

Deep Learning-Based Auto Segmentation of Oars in Head and Neck Radiation Therapy

Authors: Laila A Gharzai, Bharat B Mittal, Poonam Yadav

Affiliation: Northwestern Feinberg School of Medicine, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Northwestern University Feinberg School of Medicine

Abstract Preview: Purpose: Multiple studies have shown the increasing role of deep learning in segmenting regions of interest. This work presents the feasibility of auto-segmenting the critical structures for head and ...

Deep Learning-Based Auto-Segmentation in Cervical High-Dose-Rate Brachytherapy with Clinical Considerations

Authors: Benjamin Haibe-Kains, Ruiyan Ni, Alexandra Rink

Affiliation: Department of Medical Biophysics, University of Toronto, University Health Network

Abstract Preview: Purpose: Accurate auto-segmentation for targets and organs-at-risk (OARs) using deep learning reduces the delineating time in radiotherapy. In high-dose-rate brachytherapy, specific clinical criteria ...

Deep Learning-Based Segmentation Using Cine Epid Images for Real-Time Tumor Monitoring

Authors: Fumiaki Komatsu, Shunsuke Moriya, Ryosuke Nakamura, Takeji Sakae, Toshiyuki Terunuma, Tetsuya Tomita

Affiliation: Graduate School of Comprehensive Human Sciences, University of Tsukuba, Institute of Medicine, University of Tsukuba, Proton Medical Research Center, University of Tsukuba, Department of Radiology, University of Tsukuba Hospital

Abstract Preview: Purpose: To develop a deep learning (DL) model capable of accurately tracking lung tumors independent of beam angle variations.
Methods: A thoracic dynamic phantom simulating lung motion in the sup...

Deep Learning-Based Segmentation for Precision Radiation Therapy in Breast Cancertreatment

Authors: Hamdah Alanazi, Silvia Pella

Affiliation: FAU, Florida Atlantic University

Abstract Preview: Purpose: The appearance of breast cancer in the global list of most common cancers worldwide requires
research for ultimate treatment approaches including radiation therapy to reduce deaths from br...

Deep Learning-Based Ventricular Auto-Segmentation for Dosimetric Analysis in Intraventricular Tumor SRS

Authors: John Byun, Juan J Cardona, Steven D Chang, Cynthia Fu-Yu Chuang, Xuejun Gu, Yusuke Hori, Hao Jiang, Fred Lam, Lianli Liu, Weiguo Lu, David Park, Erqi Pollom, Elham Rahimy, Deyaaldeen Abu Reesh, Scott Soltys, Gregory Szalkowski, Lei Wang

Affiliation: Department of Radiation Oncology, Stanford University, Department of Neurosurgery, Stanford School of Medicine, Department of Neurosurgery, Stanford University, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose:
Intraventricular tumors pose significant challenges in neurosurgery due to their complex location. Therefore, brain SRS could be a better treatment option. At our institution, some patient...

Deep Learning-Driven Comparative Analysis of CNN-Based Architectures and High-Order Vision Mamba U-Net (H-vMUNet) for MRI-Based Brain Tumor Segmentation

Authors: Sang Hee Ahn, Nalee Kim, Do Hoon Lim

Affiliation: Samsung Medical Center, Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine

Abstract Preview: Purpose: MRI offers superior soft-tissue contrast, aiding tumor localization and segmentation in radiation therapy, which traditionally relies on oncologists' expertise. This study compares CNN-based ...

Development and Validation of a Deep Learning-Based Auto-Segmentation Module for Vestibular Schwannoma

Authors: John Byun, Steven D Chang, Cynthia Fu-Yu Chuang, Xuejun Gu, Melanie Hayden Gephart, Yusuke Hori, Fred Lam, Gordon Li, Lianli Liu, Weiguo Lu, David Park, Erqi Pollom, Elham Rahimy, Deyaaldeen Abu Reesh, Scott Soltys, Gregory Szalkowski, Lei Wang, Xianghua Ye, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Department of Neurosurgery, Stanford University, Department of Radiation Oncology, Stanford University, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose: Accurate and automated delineation of vestibular schwannoma (VS) volume is crucial for disease management, as both treatment approaches (stereotactic radiosurgery and invasive surgery) and mo...

Development of an Orthogonal X-Ray Projections-Guided Cascading Volumetric Reconstruction and Tumor-Tracking Model for Adaptive Radiotherapy

Authors: Penghao Gao, Zejun Jiang, Huazhong Shu, Linlin Wang, Gongsen Zhang, Jian Zhu

Affiliation: Laboratory of Image Science and Technology, Key Laboratory of Computer Network and Information Integration, Southeast University, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Artificial Intelligence Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences

Abstract Preview: Purpose: We propose a cascading framework for time-varying anatomical volumetric reconstruction and tumor-tracking, guided by onboard orthogonal-view X-ray projections.
Methods: We employe multiple...

Do We Need Pediatric-Specific Models for Radiotherapy Auto-Contouring? a Comparative Study of Pediatric and Adult-Trained Tools

Authors: Gregory T. Armstrong, James E. Bates, Christine V. Chung, Lei Dong, Ralph Ermoian, Jie Fu, Christine Hill-Kayser, Rebecca M. Howell, Meena S. Khan, Sharareh Koufigar, John T. Lucas, Thomas E. Merchant, Taylor Meyers, Tucker J. Netherton, Constance A. Owens, Arnold C. Paulino, Sogand Sadeghi

Affiliation: Department of Radiation Oncology, University of Washington and Fred Hutchinson Cancer Center, Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, St. Jude Children's Research Hospital, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Department of Radiation Oncology, St. Jude Children’s Research Hospital, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, University of Washington/ Fred Hutchinson Cancer Center, Department of Radiation Oncology, University of Pennsylvania, University of Pennsylvania, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Department of Radiation Oncology and Winship Cancer Institute, Emory University, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences

Abstract Preview: Purpose: Clinical workflows often rely on auto-segmentation tools trained on adult data, which may exhibit suboptimal performance in pediatric imaging due to inherent anatomical variations and smaller...

Enhanced Pelvic Organ Segmentation Using LLM-Driven Prompts for Prostate Cancer Low-Dose-Rate Brachytherapy

Authors: Yang Lei, Tian Liu, Ren-Dih Sheu, Meysam Tavakoli, Jing Wang, Kaida Yang, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai, Department of Radiation Oncology, Emory University

Abstract Preview: Purpose:
The study aimed to improve target and organ at risk (OAR) segmentation in low-dose-rate brachytherapy (LDR-BT) for prostate cancer treatment, by integrating clinical guidelines into deep l...

Enhancing CNN-Based Brain Metastasis Detection in MRI By Integrating Locoregional 3D Deformation Technique

Authors: Minbin Chen, Ke Lu, Kaizhong Shi, Chunhao Wang, Chuan Wu, Zhenyu Yang, Fang-Fang Yin, Jingtong Zhao

Affiliation: The First People's Hospital of Kunshan, Duke University, Medical Physics Graduate Program, Duke Kunshan University, Duke Kunshan University, Department of Radiation Oncology, Duke Kunshan University

Abstract Preview: Purpose: MRI-based automatic detection of brain metastases is often challenged by the small size and subtle nature of metastases. This study aimed to develop a novel deep learning-based brain metastas...

Enhancing T2-Weighted Brain MRI Resolution across Orientations Using AI-Based Volumetric Reconstruction

Authors: Mengqi Shen, Meghna Trivedi, Tony J.C. Wang, Andy (Yuanguang) Xu, Yading Yuan

Affiliation: Columbia University Medical Center, Dept of Med Hematology & Oncology, Data Science Institute at Columbia University, Columbia University Irving Medical Center, Department of Radiation Oncology, Columbia University Irving Medical Center

Abstract Preview: Purpose: T2-weighted (T2w) images are critical for identifying pathological changes due to their superior contrast in differentiating tissue types. However, they often lack detailed anatomical resolut...

Ensuring Consistency in Digital Pathology: Medical Physics Approaches to Comparison of Scanner Contrast and Chromaticity

Authors: Diana Cardona, Casey C. Heirman, William Jeck, Kyle J. Lafata, Xiang Li, Lauren M. Neldner, Jeffrey S. Nelson, Megan K. Russ, Ehsan Samei

Affiliation: Duke University, Department of Radiation Oncology, Duke University, Department of Pathology, Duke University, Clinical Imaging Physics Group, Department of Radiology, Duke University Health System

Abstract Preview: Purpose: Medical physicists have traditionally supported radiation-based medicine, but their expertise can translate to other image-based fields including pathology. As pathology transitions to digita...

Evaluate a Deep-Learning Auto-Segmentation Software for Liver SIRT

Authors: Wookjin Choi, Jun Li

Affiliation: Thomas Jefferson University

Abstract Preview: Purpose: Resin Yttrium-90 (Y-90) selective internal radiation therapy (SIRT) is a radioembolization procedure which uses Y-90 microspheres to treat metastatic liver cancer. In the procedure, liver vol...

Evaluating Deep Learning Models for Accurate Segmentation of GTV and Oars in MR-Guided Adaptive Radiotherapy for Pancreatic Cancer

Authors: Christopher G. Ainsley, Pradeep Bhetwal, Yingxuan Chen, Wookjin Choi, Vimal K. Desai, Karen E. Mooney, Adam Mueller, Hamidreza Nourzadeh, Yevgeniy Vinogradskiy, Maria Werner-Wasik

Affiliation: Thomas Jefferson University

Abstract Preview: Purpose: MR-guided adaptive radiotherapy (MRgART) has demonstrated improved outcomes for patients with pancreatic cancer. However, the time-consuming re-segmentation of targets and organs-at-risk (OAR...

Evaluating Necessity of Patient-Specific Deep Learning-Based Auto-Segmentation for Improved Adaptation for Abdominal Tumors

Authors: Asma Amjad, Renae Conlin, Eric S. Paulson, Christina M. Sarosiek

Affiliation: Department of Radiation Oncology, Medical College of Wisconsin

Abstract Preview: Purpose: In an effort to improve contouring accuracy for abdominal MR guided online adaptive radiotherapy (MRgOART), patient-specific deep learning-based auto-segmentation (PS-DLAS) has been proposed....

Evaluating the Impact of Different Deface Algorithms on the Deep Learning Segmentation Software Performance

Authors: Ali Ammar, Quan Chen, Yi Rong, Libing Zhu

Affiliation: Mayo Clinic Arizona

Abstract Preview: Purpose: To investigate how defacing algorithms, essential for patient privacy in data sharing, impact AI-based segmentation performance in CT imaging for radiation therapy. This study evaluates wheth...

Expanding the Reach: Integrating AI-Generated Auto Contours Via Ray Station’s Deep Learning Segmentation into Diverse Treatment Planning Systems

Authors: Raghavendra Raghavendra, Kanaparthy Raja Muralidhar, Venkataramanan Ramachandran, Srinivas Srinivas

Affiliation: Karkinos Healthcare

Abstract Preview: Purpose: This study explores the Integrating AI-Generated Auto Contours via Ray Station’s Deep Learning Segmentation into Diverse Treatment Planning Systems.
Methods: The research encompassed a gro...

Fast Synthetic-CT-Free Dose Calculation in MR Guided RT

Authors: Claus Belka, Stefanie Corradini, George Dedes, Nikolaos Delopoulos, Christopher Kurz, Guillaume Landry, Ahmad Neishabouri, Domagoj Radonic, Adrian Thummerer, Niklas Wahl, Fan Xiao

Affiliation: Department of Radiation Oncology, LMU University Hospital, LMU Munich, Department of Medical Physics, LMU Munich, Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO)

Abstract Preview: Purpose: In MR-guided online adaptive radiotherapy, MRI lacks tissue attenuation information necessary for accurate dose calculations. Instead of using deep learning methods to generate synthetic CT i...

Follow-the-Leader Framework for Adaptable Target Segmentation in Radiotherapy

Authors: Mingli Chen, Xuejun Gu, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose: This study introduces a novel template-guided deep learning framework for primary gross tumor volume (GTVp) segmentation, addressing challenges posed by diverse tumor types and enabling a uni...

Foundation Model-Augmented Learning for Automatic Delineation in Precision Radiotherapy

Authors: Xianjin Dai, PhD, Michael Gensheimer, Praveenbalaji Rajendran, Lei Xing, Yong Yang

Affiliation: Department of Radiation Oncology, Stanford University, Massachusetts General Hospital, Harvard Medical School

Abstract Preview: Purpose: Recent advances in the automatic delineation of radiotherapy treatment targets, which incorporate linguistic clinical data extracted by large language models (LLMs) into traditional visual-on...

Foundation Models with Balanced Data Sampling Enhance Auto-Segmentation for Cardiac Substructures

Authors: Chloe Min Seo Choi, Nikhil Mankuzhy, Aneesh Rangnekar, Andreas Rimner, Maria Thor, Harini Veeraraghavan, Abraham Wu

Affiliation: Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Cardiac substructure irradiation predisposes patients for poor outcomes in thoracic radiation therapy. A deep learning model was developed to segment the cardiac substructures invariant to co...

Image Similarity Measurement Based on Handcrafted and Deep Learning Radiomics

Authors: John Ginn, Chenlu Qin, Deshan Yang

Affiliation: Duke University, Department of Radiation Oncology, Duke University

Abstract Preview: Purpose: Clinical implementation of auto-segmentation tools has been hindered by poor interpretability and generalizability of AI models, necessitating the development of automated contour quality ass...

Improving Segmentation Precision in Prostate Cancer Adaptive Radiotherapy with the Intentional Deep Overfit Learning (IDOL) Approach

Authors: Seungryong Cho, Donghyeok Choi, Joonil Hwang, Byung-Hee Kang, Jin Sung Kim, Eungman Lee, Younghee Park

Affiliation: Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, KAIST, Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Ewha Womans University of Medicine

Abstract Preview: Purpose: Radiation therapy (RT) is critical for cancer treatment, but changes in tumor size and shape during therapy challenge precise dose delivery. Adaptive radiation therapy (ART) addresses these v...

Improving the Robustness of AI-Based Detection and Segmentation for Brain Metastasis By Optimizing Loss Function and Multi-Dataset Training

Authors: Omar Awad, Alfredo Enrique Echeverria, Issam M. El Naqa, Daniel Allan Hamstra, Yiding Han, Ryan Lafratta, Abdallah Sherif Radwan Mohamed, Piyush Pathak, Zaid Ali Siddiqui, Baozhou Sun, Vincent Ugarte

Affiliation: H. Lee Moffitt Cancer Center, Harris Health, Baylor College of Medicine

Abstract Preview: Purpose:
Accurate detection and segmentation of brain metastases are critical for diagnosis, treatment planning, and follow-up imaging but are challenging due to labor-intensive manual assessments ...

Incorporating Physicians’ Contouring Style into Auto-Segmentation of Clinical Target Volume for Post-Operative Prostate Cancer Radiotherapy Using a Language Encoder

Authors: Steve B. Jiang, Chien-Yi Liao, Dan Nguyen, Daniel Yang, Hengrui Zhao

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Post-operative radiotherapy for prostate cancer requires precise contouring of the clinical target volume (CTV) to account for microscopic disease that is invisible in the image. However, ...

Insights into Deep Learning Auto-Segmentation for Abdominal Organs in MR-Guided Adaptive Radiation Therapy: A Single-Institution CT-MR Comparison

Authors: Asma Amjad, Renae Conlin, Eric S. Paulson, Christina M. Sarosiek

Affiliation: Department of Radiation Oncology, Medical College of Wisconsin

Abstract Preview: Purpose:
MR-guided adaptive radiation therapy (MRgART) is transforming clinical workflows, requiring fast, accurate organs-at-risk (OARs) contouring. While deep learning auto-segmentation (DLAS) of...

Integrating Clinical Knowledge Via Llms for Precise Organ-at-Risk Segmentation in Pancreatic Cancer SBRT

Authors: Karyn A Goodman, Yang Lei, Tian Liu, Pretesh Patel, Jing Wang, Kaida Yang, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: This study aims to improve organ-at-risk (OAR) segmentation in pancreatic cancer stereotactic body radiotherapy (SBRT) by integrating clinical guidelines into deep learning workflows. We use ...

Integrating Foundation Model with Self-Supervised Learning for Brain Lesion Segmentation with Multimodal and Diverse MRI Datasets

Authors: Zong Fan, Fan Lam, Hua Li, Rita Huan-Ting Peng, Yuan Yang

Affiliation: University of Illinois at Urbana Champaign, University of Illinois at Urbana-Champaign, Washington University School of Medicine, University of Illinois Urbana-Champaign

Abstract Preview: Purpose: Accurate lesion segmentation in MRI is critical for early diagnosis, treatment planning, and monitoring disease progression in various neurological disorders. Cross-site MRI data can alleviat...

Integrating Large Kernel Attention Mechanism into Deep Learning Model for Automatic and Auccrate Segmentation of Gross Tumor Volume in Lung Cancer Patients

Authors: Xuezhen Feng, Li-Sheng Geng, Haoze Li, Xi Liu, Tianyu Xiong, Ruijie Yang

Affiliation: Department of Health Technology and Informatics, The Hong Kong Polytechnic University, School of Physics, Beihang University, School of Nuclear Science and Technology, University of South China, Department of Radiation Oncology, Peking University Third Hospital

Abstract Preview: Purpose: This study aimed to develop a deep learning-based algorithm for automatically delineate gross tumor volume (GTV) for lung cancer patients, alleviating the workload of radiologists and improvi...

Integrating Multiple Modalities with Pretrained Swin Foundation Model for Head and Neck Tumor Segmentation

Authors: Jue Jiang, Aneesh Rangnekar, Shiqin Tan, Harini Veeraraghavan

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Weill Cornell Graduate School of Medical Sciences

Abstract Preview: Purpose: Clinicians often use information from FDG-PET and CT to interpret and delineate gross tumor (GTVp) and nodal (GTVn) volumes for radiotherapy planning in head and neck (HN) cancer patients. He...

Integrating Neuroanatomic Knowledge in Clinical Target Volumes for Glioma Patients Using Deep Learning

Authors: Ali Ajdari, Thomas R. Bortfeld, Christopher Bridge, Gregory Buti, Marcela Giovenco, Fredrik Lofman, Gregory C. Sharp, Helen A Shih, Tugba Yilmaz

Affiliation: Massachusetts General Hospital, RaySearch Laboratories, Department Of Radiation Oncology, Massachusetts General Hospital (MGH), Massachusetts General Hospital & Harvard Medical School, Massachusetts General Hospital and Harvard Medical School

Abstract Preview: Purpose: Defining radiation target volumes with accurate integration of the neuroanatomy is one of the major difficulties in designing glioma treatments. We developed a deep learning network for norma...

Intelligent Black Box Recording for Radiation Therapy: Feasibility Study of Vision-Language Models for Treatment Monitoring.

Authors: Wookjin Choi, James M. Lamb, David Romanofski, David H. Thomas, Yevgeniy Vinogradskiy

Affiliation: Drexel, Department of Radiation Oncology, University of California, Los Angeles, Thomas Jefferson University

Abstract Preview: Purpose: To develop an intelligent Black Box Recorder for radiation therapy (RT) that monitors patient treatments using a vision language model.
Methods: The system captures synchronized screen rec...

Knee Image Generation Based on Fine-Tuning Stable Diffusion Model

Authors: Xiangli Cui, Zilei Fu, Man Hu, Wanli Huo, Xiaoqing Wu, Jianguang Zhang, Yingying Zhang

Affiliation: Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, the Zhejiang-New Zealand Joint Vision-Based Intelligent Metrology Laboratory, College of Information Engineering, China Jiliang University, Departments of Radiation Oncology, Zibo Wanjie Cancer Hospital, Department of Oncology, Xiangya Hospital, Central South University, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences

Abstract Preview: Purpose:
Using Stable Diffusion to generate images of the knee in different disease states can enrich the medical imaging database and inject new vitality into the field of medical imaging analysis...

Mask-Based Synthetic Contrast-Enhanced CT Generation for Advancing Data Limited Segmentation on Cardiac Substructure

Authors: Jin Sung Kim, Chanwoong Lee, Young Hun Yoon

Affiliation: Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine

Abstract Preview: Purpose: Chest contrast-enhanced CT (CECT) serves as a valuable tool for cardiac imaging, but its lack of detailed anatomical visualization limits its utility in segmentation tasks. While CECT offers ...

Medical Data Handler: A Research-Oriented Graphical User Interface for Dicom Processing, Image Analysis, and Data Management

Authors: Andrew R. Godley, Steve B. Jiang, Mu-Han Lin, Austen Matthew Maniscalco, Dan Nguyen, Yang Kyun Park

Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Preparing DICOM datasets for research and education is challenging due to the complexity of the format and the necessity for patient-specific handling. Existing workflows demand substantia...

Mitigating Data-Driven Uncertainty in Machine Learning-Based Radiotherapy Outcome Prediction

Authors: Ali Ajdari, Alice Bondi, Thomas R. Bortfeld, Gregory Buti, Xinru Chen, Zhongxing Liao, Antony John Lomax, Ting Xu

Affiliation: The University of Texas MD Anderson Cancer Center, Department Of Radiation Oncology, Massachusetts General Hospital (MGH), Massachusetts General Hospital & Harvard Medical School, Paul Scherrer Institut, ETH Zurich

Abstract Preview: Title: Addressing Imaging and Biomarker-driven Uncertainty in Machine Learning-based Radiotherapy Outcome Prediction
Alice Bondi, Gregory Buti, Antony Lomax, Thomas Bortfeld, Xinru Chen, Ting Xu, Z...

Modality-Agnostic Image Cascade (MAGIC) for Multi-Modality Cardiac Substructure Segmentation

Authors: Ming Dong, Carri K. Glide-Hurst, Qisheng He, Anudeep Kumar, Alex Singleton Kuo, Joshua Pan, Chase Ruff, Nicholas R. Summerfield

Affiliation: Department of Computer Science, Wayne State University, Departments of Human Oncology and Medical Physics, University of Wisconsin-Madison, Department of Human Oncology, University of Wisconsin-Madison

Abstract Preview: Purpose: Recent evidence highlights the importance of incorporating cardiac substructures (CS) into treatment planning for thoracic cancers, however current segmentation methods are limited to a singl...

Multi-Modality Artificial Intelligence for Involved-Site Radiation Therapy: Clinical Target Volume Delineation in High-Risk Pediatric Hodgkin Lymphoma

Authors: Tyler J Bradshaw, Sharon M Castellino, Steve Y Cho, David Hodgson, Bradford S Hoppe, Kara M Kelly, Andrea Lo, Sarah Milgrom, Xin Tie

Affiliation: Department of Radiation Oncology, University of Toronto, Department of Radiology, University of Wisconsin, University of Colorado Anschutz, Department of Medical Physics, University of Wisconsin, Department of Radiation Oncology, Mayo Clinic, Department of Radiation Oncology, BC Cancer, Vancouver Center, Department of Radiology, University of Wisconsin - Madison, Roswell Park Comprehensive Cancer Center, Emory University School of Medicine

Abstract Preview: Purpose: Clinical target volume (CTV) delineation for involved-site radiation therapy (ISRT) in Hodgkin lymphoma (HL) is time-consuming due to the need to analyze multi-time-point PET/CT scans co-regi...

Nnae: Automating Anomaly Detection and Quality Assurance in Medical Image Segmentation

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose:
Deep learning-based automatic medical image segmentation is increasingly employed in clinical practice, significantly reducing manual workload. However, verifying segmentation results rema...

Pancrea-Seg-Net: A Semi-Supervised Deep Learning Framework for Pancreatic Tumor and Vessel Segmentation

Authors: Manju Liu, Ning Wen, Fuhua Yan, Yanzhao Yang, Zhenyu Yang, Haoran Zhang, Lei Zhang, Yajiao Zhang

Affiliation: Department of Radiology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy where precise segmentation of tumors and adjacent vessels is crucial for effective treatment planning. This study dev...

Patient-Specific Coronary Artery Habitat Model for Enhanced Cardiac Sparing

Authors: Blessing Akinro, Soumyanil Banerjee, Ming Dong, Carri K. Glide-Hurst, Prashant Nagpal, Chase Ruff, Nicholas R. Summerfield, Timothy P. Szczykutowicz

Affiliation: Departments of Human Oncology and Medical Physics, University of Wisconsin-Madison, Departments of Radiology and Medical Physics, University Wisconsin-Madison, Department of Radiology, University of Wisconsin-Madison, Department of Computer Science, Wayne State University, Department of Human Oncology

Abstract Preview: Purpose: Radiation dose to coronary arteries (CAs) during thoracic radiotherapy (RT) is linked to cardiotoxicity. However, precise CA delineation for avoidance is limited by image quality and CA compl...

Patient-Specific Imaging Modality Agnostic Virtual Digital Twins Modeling Temporally Varying Digestive Motion

Authors: James M. Balter, Lando S. Bosma, Jorge Tapias Gomez, Nishant Nadkarni, Mert R Sanbuncu, William Paul Segars, Ergys D. Subashi, Neelam Tyagi, Harini Veeraraghavan

Affiliation: University of Michigan, The University of Texas MD Anderson Cancer Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Carl E. Ravin Advanced Imaging Laboratories and Center for Virtual Imaging Trials, Duke University Medical Center, Cornell University, University Medical Center Utrecht, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Develop patient-specific virtual digital twin (VDT) cohorts modeling physically realistic spatio-temporal gastrointestinal (GI) organs (stomach and duodenum) digestive motion.
Methods: Pat...

Performance Evaluation of Patient Demographics Model-Based Liver Volumetry

Authors: Yasaman Anbari, Srinivas Cheenu Kappadath, Benjamin P. Lopez, Armeen Mahvash, Ali Yousefi

Affiliation: University of Houston, UT MD Anderson Cancer Center

Abstract Preview: Purpose: Patient-demographics-model-based liver volumetry is well-established for determining the future liver remnant following hepatectomy. We used gold-standard CT liver segmentation to validate th...

Predicting Elective Pelvic Nodal Volumes with Deep Learning: A Tool to Facilitate Peer Review

Authors: Brian M. Anderson, Shiva K. Das, Meagan Foster, Anirudh Karunaker, Lawrence B. Marks, Lukasz Mazur, Michael Repka

Affiliation: UNC Chapel HIll, University of North Carolina at Chapel Hill, UNC School of Medicine, University of North Carolina

Abstract Preview: Purpose: Development of a peer review segmentation check system to identify deviations in physician contours of standard risk pelvic lymph nodes in patients receiving radiation therapy for prostate an...

Quality Monitoring of Temporal Performance Degradation in Clinical Use of AI Auto-Segmentation

Authors: Ali Ammar, Quan Chen, Jingwei Duan, Yi Rong, Nathan Y. Yu, Libing Zhu

Affiliation: Mayo Clinic Arizona, University of Alabama at Birmingham

Abstract Preview: Purpose: Clinical performance of deep learning-based auto-segmentation (DLAS) can degrade over time due to AI “aging” from unseen data input compared to the initial model training data. This study aim...

Research on Multi-Organ Segmentation Based on Cross-Domain Transfer Learning

Authors: Jiali Gong, Yi Guo, Chi Han, Wanli Huo, Hongdong Liu, Zhao Peng, Yaping Qi, Zhaojuan Zhang

Affiliation: Department of Radiotherapy, cancer center, The First Affiliated Hospital of Fujian Medical University, Department of Oncology, Xiangya Hospital, Central South University, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, China Jiliang University, Division of lonizing Radiation Metrology, National Institute of Metrology, Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, the Zhejiang-New Zealand Joint Vision-Based Intelligent Metrology Laboratory, College of Information Engineering, China Jiliang University

Abstract Preview: Purpose: To address overfitting from limited training data in multi-organ segmentation, an efficient transfer learning framework is proposed. It reduces reliance on training samples, enabling a single...

Segmentation Regularized Registration Training Improves Multi-Domain Generalization of Deformable Image Registration for MR-Guided Prostate Radiotherapy

Authors: Lando S. Bosma, Victoria Brennan, Nicolas Cote, ChengCheng Gui, Nima Hassan Rezaeian, Jue Jiang, Sudharsan Madhavan, Josiah Simeth, Neelam Tyagi, Harini Veeraraghavan, Michael J Zelefsky

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, NYU Langone Health, University Medical Center Utrecht, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Deep learning-based deformable image registration (DIR) models often lack robustness when applied to datasets with differing imaging characteristics. We aimed to (1) improve registration netw...

Spatially Informed Auto-Segmentation of Cardiac Nodes for Radiotherapy Treatment Planning

Authors: Ming Dong, Carri K. Glide-Hurst, Joshua Pan, Nicholas R. Summerfield

Affiliation: Department of Computer Science, Wayne State University, Departments of Human Oncology and Medical Physics, University of Wisconsin-Madison, Department of Human Oncology, University of Wisconsin-Madison

Abstract Preview: Purpose: Radiation dose to the cardiac nodes is more strongly associated with conduction disorders and arrythmias than whole heart (WH) metrics. However, node segmentation is challenging due to comple...

Spherical Slicing and Convolutions for Accurate Glioma Tumor Segmentation Using Multi-Parametric MRI

Authors: Ke Lu, Chunhao Wang, Ruoxu Xia, Zhenyu Yang, Fang-Fang Yin, Chulong Zhang, Lei Zhang, Rihui Zhang, Jingtong Zhao, Haiming Zhu

Affiliation: Duke University, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University, The First People's Hospital of Kunshan

Abstract Preview: Purpose: The human brain’s spherical geometry offers unique opportunities for improving the segmentation of tiny and irregular anatomical structures. We hypothesize that representing the brain in sphe...

Tailor-TS System: Tailored Tumor Segmentation System with Facility-Specific Semi-Supervised Learning

Authors: Gong Vincent Hao, Daisuke Kawahara, Jokichi Kawazoe, Yuji Murakami, Ikuno Nishibuchi, Peiying Colleen Ruan, Daguang Xu, Dong Yang

Affiliation: Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima University, NVIDIA

Abstract Preview: Purpose:
Accurate tumor segmentation in head and neck cancer is critical for effective treatment planning, but variability in practices across medical facilities poses challenges for standardizatio...

Towards Real-Time Radiotherapy Monitoring By Cherenkov Imaging: Applications of Patient-Specific Bio-Morphological Features Segmented Via Deep Learning

Authors: Petr Bruza, Yao Chen, David J. Gladstone, Lesley A Jarvis, Brian W Pogue, Kimberley S Samkoe, Yucheng Tang, Shiru Wang, Rongxiao Zhang

Affiliation: NVIDIA Corp, Dartmouth College, Thayer School of Engineering, Dartmouth College, Dartmouth Cancer Center, University of Missouri, University of Wisconsin - Madison

Abstract Preview: Purpose: Cherenkov imaging provides real-time visualization of megavoltage radiation beam delivery during radiotherapy. Patient-specific bio-morphological features, such as vasculature, captured in th...

Uncertainty-Guided Cross-Domain Adaptation for Unsupervised Medical Image Segmentation

Authors: Yunxiang Li, Weiguo Lu, Xiaoxue Qian, Hua-Chieh Shao, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Curating high-quality, labeled data for medical image segmentation can be challenging and costly, considering the existence of various image domains with differing modalities/protocols. Cr...