Search Submissions šŸ”Ž

Results for "machine learning": 81 found

18F-FDG PET/CT-Based Deep Radiomic Models for Enhancing Chemotherapy Response Prediction in Breast Cancer

Authors: Ke Colin Huang, Zirui Jiang, Joshua Low, Christopher F. Njeh, Oluwaseyi Oderinde, Yong Yue

Affiliation: Purdue University, Indiana University School of Medicine, Department of Radiation Oncology

Abstract Preview: Purpose: Enhancing the accuracy of tumor response predictions enables the development of tailored therapeutic strategies for patients with breast cancer (BCa). In this study, we developed deep-radiomi...

A Causal Machine Learning Analysis of Dosimetric and Clinical Predictors of Osteoradionecrosis in Head and Neck Cancer Radiotherapy

Authors: Jingyuan Chen, Sheng Li, Tianming Liu, Wei Liu, Zhengliang Liu, Zhong Liu, Daniel Ma, Samir H. Patel, Guangya Wang, Yunze Yang

Affiliation: University of Miami, Mayo Clinic, School of Data Science, University of Virginia, School of Computing, University of Georgia, Department of Radiation Oncology, Mayo Clinic, Institute of Western China Economic Research, Southwestern University of Finance and Economics

Abstract Preview: Purpose:
Traditional patient outcome analyses relied heavily on conventional statistical models that primarily elucidate correlation rather than causal relationships. In this study, we aim to ident...

A Feasible, Extendable, and Low-Cost Web-Based Application to Minimize the Second-Check Workload

Authors: William N. Duggar, Li Yuan

Affiliation: University of Mississippi Medical Center

Abstract Preview: Purpose:
Radiation Oncology departments typically utilize various systems from different vendors. Ensuring the integrity and correctness of data during transfers between these systems is essential ...

A Hybrid Radiomics-Integrated Machine Learning Framework for Early Identification of Potential Radiation Pneumonitis in Lung Cancer Patients

Authors: Christos Ilioudis, Marios Myronakis, Sotirios Raptis, Kyriaki Theodorou

Affiliation: Medical Physics Department, Medical School, University of Thessaly, Department of Information and Electronic Engineering, International Hellenic University (IHU)

Abstract Preview: Purpose: This study presents a radiomics-driven, machine learning framework developed to predict the possibility of Radiation Pneumonitis (RP), as a side effect of radiation therapy in lung cancer pat...

A Multi-Omics Approach for Predicting Acute Hematologic Toxicity in Patients with Cervical Cancer Undergoing External-Beam Radiotherapy

Authors: Sijuan Huang, Yongbao Li

Affiliation: Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, 510060, China, Sun-Yat sen University Cancer Center

Abstract Preview: Purpose: Hematologic toxicity (HT) is one of the most prevalent treatment-related toxicities experienced by locally advanced cervical cancer (LACC) patients receiving radiotherapy (RT). This study aim...

A New Approach for Teaching Mathematical and Computational Methods to Medical Physics Students

Authors: Jenghwa Chang, Marissa Joyce Vaccarelli

Affiliation: Northwell, Hofstra University Medical Physics Program

Abstract Preview: Purpose: AAPM Report 365 recommends medical physics graduate programs offer courses covering mathematical/statistical methods (section 3.1.7) as well as computational methods/medical informatics (sect...

A Novel Non-Measured and DVH-Based IMRT QA Framework with Machine Learning for Instant Classification of Susceptible Lung SBRT VMAT Plans

Authors: Chuan He, Anh H. Le, Iris Z. Wang

Affiliation: Roswell Park Comprehensive Cancer Center, Cedars-Sinai

Abstract Preview: Purpose: To develop a non-measured and DVH-based (NMDB) IMRT QA framework integrating machine learning (ML) to classify lung SBRT VMAT plans prone to delivery errors
Methods: 560 Eclipse AcurosXB l...

A Predictive Tool for Optimizing Treatment System Allocation in Hypofractionated Whole-Breast Radiotherapy

Authors: Zhenzhen Dai, Anthony J. Doemer, Ryan Hall, Kenneth Levin, Bing Luo, Benjamin Movsas, Karen C. Snyder, Kundan S Thind, Eleanor Walker

Affiliation: Henry Ford Health, HFHS

Abstract Preview: Purpose: To investigate the feasibility of a predictive tool for efficient allocation of hypofractionated whole-breast irradiation patients between Varian Truebeam and Ethos systems.
Methods: A ful...

A Radiomic Quantification Framework for Hyperparameter Optimization in Texture Characterization

Authors: Yuli Lu, Chendong Ni, Cheng Qian, Kun Qian, Weiwei Sang, Chunhao Wang, Fan Xia, Zhenyu Yang, Fang-Fang Yin, Rihui Zhang, Haiming Zhu

Affiliation: Jiahui International Hospital, Radiation Oncology, Duke University, Medical Physics Graduate Program, Duke Kunshan University, Duke Kunshan University, The First People's Hospital of Kunshan

Abstract Preview: Purpose: To develop a radiomic quantification framework to evaluate the effects of radiomic image preprocessing hyperparameters (i.e., image resampling and discretization) on texture characterization ...

AI-Assisted Cellular and Organoid Analysis for Lenalidomide-Based Radioimmunotherapy Against Glioblastoma

Authors: ISAAC Amoah, Jackie Austin, Charlotte Block, Kaylee Brilz, Dylan Bui, Andrew E. Ekpenyong, Jayce Hughes, Pralhad Itani, Natasha Ratnapradipa, Sara Strom, Jacob Woolf

Affiliation: Creighton University

Abstract Preview: Purpose:
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults, with a median survival of approximately 15 months despite the current standard of care, which includes s...

Automated Case Prioritization in Breast Radiation Therapy Peer Review Rounds

Authors: Leigh A. Conroy, Thomas G Purdie, Christy Wong

Affiliation: Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre

Abstract Preview: Purpose: To develop a novel machine learning (ML) algorithm to evaluate and rank breast radiation therapy (RT) treatment plans based on treatment complexity for prioritization in multidisciplinary pee...

Automated Diagnosis of Pancreatic Cancer Using Both Radiomics and 3D-Convolutional Neural Network

Authors: Beth Bradshaw Ghavidel, Benyamin Khajetash, Yang Lei, Meysam Tavakoli

Affiliation: Icahn School of Medicine at Mount Sinai, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Emory University, Department of Radiation Oncology, Emory University

Abstract Preview: Purpose: Pancreatic cancer is among the most aggressive types of cancer, with a five-year survival rate of approximately 10%. Recent studies show that radiomics and deep learning (DL)-based methods ar...

Automated Framework for Predicting Tumour Growth in Vestibular Schwannomas Using Contrast-Enhanced T1-Weighted MRI

Authors: Mehdi Amini, Minerva Becker, Simina Chiriac, Alexandre Cusin, Dimitrios Daskalou, Ghasem Hajianfar, Sophie Neveu, Marcella Pucci, Yazdan Salimi, Pascal Senn, Habib Zaidi

Affiliation: Geneva University Hospital, Division of Radiology, Diagnostic Department, Geneva University Hospitals, Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals

Abstract Preview: Purpose: Personalized prediction of vestibular schwannoma (VS) tumour growth is crucial for guiding patient management decisions toward observation versus intervention. This study proposes an automate...

BEST IN PHYSICS THERAPY: Overcoming Challenges in Developing Machine Learning-Driven Acute Kidney Injury Predictive Models Using Non-Standard Emrs in Resource-Limited Settings

Authors: Yuanhan Chen, Ziqiang Chen, Qi Cheng, Feng Ding, Rui Fang, Shengwen Guo, Li Hao, Qiang He, Haiquan Huang, Yu Kuang, Xinling Liang, Yuanjiang Liao, Guohui Liu, Chen Lu, Qingquan Luo, Jing Sun, Yanhua Wu, Zhen Xie, Qin Zhang, Lang Zhou

Affiliation: South China University of Technology, Dongguan people's hospital, Sichuan Provincial People's Hospital, People’s Hospital of Xinjiang Uygur Autonomous Region, Second Hospital of Anhui Medical University, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Easy Life Information Technology Co., Ltd, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Medical Physics Program, University of Nevada, Second Hospital of Jilin University, Chongqing Ninth People's Hospital

Abstract Preview: Purpose: Acute kidney injury (AKI) is a global healthcare issue with a rapid onset and severe consequences. Repeated measurement of serum creatinine (SCr) levels, a clinical standard of care, is cruci...

Binary Classification of Lymphedema in 3DCRT Patients Using Machine Learning on 3D Dose Distribution Data

Authors: Jee Suk Chang, Hojin Kim, Jin Sung Kim, Jaehyun Seok

Affiliation: Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Department of Integrative Medicine

Abstract Preview: Purpose: This study aims to leverage 3D dose distribution data to develop a machine learning model capable of accurately predicting lymphedema occurrence in patients undergoing 3D conformal radiation ...

Can Automated Log-File Analysis Provide Insight into Machine Performance across Distinct Clinics?

Authors: Kellin M De Jesus, Leon Dunn, Les Sztandera, David H. Thomas

Affiliation: IsoAnalytics Pty. Ltd., Thomas Jefferson University

Abstract Preview: Purpose: Machine accuracy and performance are critical for ensuring the safety and efficacy of intensity-modulated radiotherapy (IMRT and VMAT). This study aims to analyze a large and diverse set of l...

Can Regional Radiomic Features from Pre-Treatment Computed Tomography Serve As Biomarkers for Predicting Radiation Pneumonitis?

Authors: David J. Carlson, Ming Chao, Tian Liu, Yong Hum Na, Kenneth E Rosenzweig, Robert Samstein, Lewis Tomalin

Affiliation: Icahn School of Medicine at Mount Sinai, Yale University School of Medicine, Department of Therapeutic Radiology, Yale University School of Medicine

Abstract Preview: Purpose: To investigate the potential of regional radiomic features extracted from five lung sub-lobes on pre-treatment CT as biomarkers for predicting radiation pneumonitis (RP) using machine learnin...

Clinical Implementation of Automated Contour Quality Assurance in Head and Neck Radiotherapy

Authors: Sam Armstrong, Jamison Louis Brooks, Nicole Johnson, Douglas John Moseley, Cassie Sonnicksen, Erik J. Tryggestad

Affiliation: Mayo Clinic

Abstract Preview: Purpose: To evaluate the feasibility of a shallow learning-based quality assurance (QA) tool designed to assist human reviewers in assessing organ-at-risk (OAR) contours for head and neck radiotherapy...

Commission and Clinical Implementation of the 1st Step-and-Shoot Proton Arc Therapy for Head and Neck Cancer Patient Treatment

Authors: Xiaoda Cong, Rohan Deraniyagala, Xuanfeng Ding, Xiaoqiang Li, Jian Liang, Peilin Liu, Craig Stevens, Xiangkun Xu, Weili Zheng

Affiliation: Corewell Health William Beaumont University Hospital, Corewellhealth William Beaumont University Hospital, William Beaumont University Hospital, Corewellhealth William Beaumont Hospital, Department of Radiation Oncology, Corewell Health William Beaumont University Hospital

Abstract Preview: Purpose:
Commission a step-and-shoot arc therapy(SPArc-step&shoot) for treating head-neck cancer patients as a desired interim milestone toward full dynamic treatment.
Methods:
An in-house de...

Convergence Speed Advantages of a Machine Learning Assisted Framework in IMRT Fluence Map Optimization – a Comparison Study Using Multiple Convergence Criteria

Authors: Yang Sheng, Qingrong Jackie Wu, Qiuwen Wu, Xin Wu, Dongrong Yang

Affiliation: Duke University Medical Center

Abstract Preview: Purpose: Convergence speed is crucial for an optimizer. Faster convergence leads to better solutions with fewer iterations and less time. Recently, a machine learning (ML)-assisted framework employing...

Could Synthetic CTs Simulating Patient Anatomical Changes Help Improve the Robustness of Head-and-Neck Proton Plans?

Authors: Nrusingh C. Biswal, Matthew J Ferris, Michael J. MacFarlane, Jason K Molitoris, Byong Yong Yi, Mark J. Zakhary

Affiliation: University of Maryland School of Medicine, Department of Radiation Oncology, University of Maryland School of Medicine, University of Maryland

Abstract Preview: Purpose: Proton head-and-neck treatment plans often struggle to maintain plan quality over the course of treatment due to tumor response, weight-loss, and setup variability. Plan robustness to these c...

Deep Learning-Based Eye Monitoring and Tracking System for Ocular Proton Therapy in a Regular Gantry Room

Authors: David H. Abramson, Christopher Barker, Jasmine H. Francis, Meng Wei Ho, Yen-Po Lee, Haibo Lin, Hang Qi, Andy Shim, Charles B. Simone, Weihong Sun, Xiaoxuan Xu, Siyu Yang, Francis Yu, Anna Zhai

Affiliation: College of Machine Intelligence, Nankai University, New York Proton Center, Department of Biomedical Engineering, Johns Hopkins University, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Proton therapy is an effective modality for treating ocular tumors such as uveal melanoma. We developed a novel camera‐based eye‐tracking system to provide real-time noninvasive eye positioni...

Deep Learning-Based Multileaf Collimator Sequence Prediction for Automated VMAT Treatment Planning in Pancreatic Cancer

Authors: Zixu Guan, Takahiro Iwai, Takashi Mizowaki, Mitsuhiro Nakamura, Michio Yoshimura

Affiliation: Kyoto University, Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University

Abstract Preview: Purpose:
The goal of this study is to develop a fully automated treatment planning approach for VMAT in pancreatic cancer that can convert patient anatomy into LINAC machine parameters. In this wor...

Deep Learning–Based Dose Prediction for Automated Proton Radiation Therapy Planning of Breast Cancer

Authors: Ahssan Balawi, Peter Jermain, Timothy Kearney, Sonali Rudra, Michael H. Shang, Markus Wells, Mohammad Zarenia

Affiliation: Department of Radiation Medicine, MedStar Georgetown University Hospital

Abstract Preview: Purpose: To investigate the applicability and accuracy of a deep learning (DL) model in predicting radiation dose distribution for breast cancer patients treated with pencil-beam-scanning proton radio...

Development of a Quantitative Surface Mapping Analysis Framework Involving a Robust Mask Removal Algorithm for Improved Objective Patient Setup Assessment in Head and Neck Intensity Modulated Proton Therapy

Authors: Grant Evans, Maxwell Arthur Kassel, Charles Shang, Michael H. Shang, Stephen Shang, Timothy R Williams

Affiliation: South Florida Proton Therapy Institute, SFPRF, Department of Radiation Medicine, MedStar Georgetown University Hospital

Abstract Preview: Purpose:
Daily image guidance for head and neck intensity-modulated proton therapy (IMPT) presents significant challenges due to large target volumes and anatomical changes. Geometric deviations al...

Enhanced Lung Function Assessment through Machine Learning Analysis of 4DCT Subregional Respiratory Dynamics

Authors: Jing Cai, Zhi Chen, Hong Ge, Yu-Hua Huang, Bing Li, Zihan Li, Ge Ren

Affiliation: Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital

Abstract Preview: Purpose: Algorithms based on subregional respiratory dynamics (SRD) capture spatiotemporal heterogeneity in the ventilation process, though rely on empirical modelings to map surrogate ventilation. Gi...

Enhanced Prediction of Iroc Stereotactic Radiosurgery Phantom Audit Results with Treatment Parameters, Complexity Metrics, DVH, and Dosiomics Using Machine Learning

Authors: Lian Duan, Stephen F. Kry, Hunter S. Mehrens, Christine Peterson, Paige A. Taylor

Affiliation: The University of Texas MD Anderson Cancer Center, UT MD Anderson Cancer Center

Abstract Preview: Purpose: To develop predictive models for IROC SRS head phantom audits and to identify important factors influencing institutional performance.
Methods: The IROC SRS head phantom includes two TLDs ...

Enhancing Radiotherapy Planning with Machine Learning: Correlating Anatomical Features and Planning Difficulty to Guide Optimal Plan Design

Authors: Li Chen, Shouliang Ding, Xiaoyan Huang, Lecheng Jia, Hua Li, Hongdong Liu, Yanfei Liu, Zun Piao, Guangyu Wang

Affiliation: State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Shenzhen United Imaging Research Institute of Innovative Medical Equipment

Abstract Preview: Purpose: Optimal radiotherapy planning is challenging, influenced by anatomical factors such as surrounding organs and tumor characteristics, which complicate dose distribution and target coverage. Wh...

Ensuring Consistency in Digital Pathology: Medical Physics Approaches to Comparison of Scanner Contrast and Chromaticity

Authors: Diana Cardona, Casey C. Heirman, William Jeck, Kyle J. Lafata, Xiang Li, Lauren M. Neldner, Jeffrey S. Nelson, Megan K. Russ, Ehsan Samei

Affiliation: Duke University, Department of Radiation Oncology, Duke University, Department of Pathology, Duke University, Clinical Imaging Physics Group, Department of Radiology, Duke University Health System

Abstract Preview: Purpose: Medical physicists have traditionally supported radiation-based medicine, but their expertise can translate to other image-based fields including pathology. As pathology transitions to digita...

Ensuring Consistency in Digital Pathology: Medical Physics Approaches to Comparison of Scanner Sharpness and Artifact Severity

Authors: Diana Cardona, Casey C. Heirman, William Jeck, Kyle J. Lafata, Xiang Li, Lauren M. Neldner, Jeffrey S. Nelson, Megan K. Russ, Ehsan Samei

Affiliation: Duke University, Department of Radiation Oncology, Duke University, Department of Pathology, Duke University, Clinical Imaging Physics Group, Department of Radiology, Duke University Health System

Abstract Preview: Purpose: Medical physicists traditionally support radiation-based medicine, but their expertise is translatable to image-based fields like pathology. As pathology transitions to digital practices, phy...

Estimation of Heart Dose in Left Breast Cancer Radiotherapy: Assessment of Vdibh Feasibility Using the Supervised Machine Learning Algorithm

Authors: Rajeev Gupta, Shriram Ashok Rajurkar, Teerthraj Verma

Affiliation: King George's Medical University, King George's Medical University, UP

Abstract Preview: Purpose:
The volunteer deep inspiration breath hold (vDIBH) technique is used to reduce the heart dose in left breast cancer radiotherapy. Many times, it is faced that despite rigorous exercise and...

Evaluating the Impact of Contour Variability on the Effectiveness of Deep Learning Features in Head and Neck Imaging

Authors: Hania A. Al-Hallaq, Xuxin Chen, Anees H. Dhabaan, Elahheh (Ella) Salari, Xiaofeng Yang

Affiliation: Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose:
Radiomics image analysis could lead to the development of predictive signatures and personalized radiotherapy treatments. However, variations in delineation are known to affect hand-crafte...

Evaluation of AI-Generated Synthetic 4DCT from 3DCT for Radiotherapy Planning

Authors: Shinichiro Mori, Isabella Pfeiffer, Chester R. Ramsey, Alexander Usynin

Affiliation: Thompson Proton Center, National Institutes for Quantum Science and Technology, Thompson Cancer Survival Center

Abstract Preview: Purpose: Four-dimensional CT imaging (4DCT) has become a standard tool for managing respiratory motion in radiation therapy. However, many treatment delivery systems and most diagnostic CT scanners la...

From Noisy Signals to Accurate Maps: Transforming Look-Locker MRI with an Intelligent T₁ Estimation

Authors: Prabhu C. Acharya, Hassan Bagher-Ebadian, Stephen L. Brown, James R. Ewing, Mohammad M. Ghassemi, Benjamin Movsas, Farzan Siddiqui, Kundan S Thind

Affiliation: Michigan State University, Oakland University, Henry Ford Health

Abstract Preview: Purpose: Accurate T1 quantification using T One by Multiple Read Out Pulse (TOMROP) sequences is essential for physiological assessments in dynamic-contrast-enhanced (DCE) MRI and T1 mapping studies. ...

Fundamentals of Artificial Intelligence, Machine Learning and Deep Learning

Authors: Laurence Edward Court

Affiliation: Department of Radiation Physics, The University of Texas MD Anderson Cancer Center

Abstract Preview: N/A...

Gaze Angle Selection in Proton Therapy for Ocular Tumors with Machine Learning

Authors: Ling Chen, Alexei V. Trofimov, Yi Wang, Dufan Wu

Affiliation: Massachusetts General Hospital, MGH

Abstract Preview: Purpose:
Selecting gaze angles of the eye is an important part of set-up of proton therapy for ocular tumors, ensuring that the treatment beam could irradiate the tumor while maximally sparing impo...

Hands-on AI Education for Radiology Residents

Authors: Wilfred R Furtado, Gary Y. Ge, James Lee, Jie Zhang

Affiliation: University of Kentucky

Abstract Preview: Purpose: Despite advancements in Artificial Intelligence (AI) and its growing role in clinical practices like radiology, formal AI education remains limited in medical training. This gap contributes t...

High-Resolution Limited-Angle CBCT Image Reconstruction for Non-Coplanar Radiation Therapy Via Dual-Domain Ordered-Subset Neural Representation with Prior Embedding (DDOS-NeRP)

Authors: Yu Gao, Lei Xing, Siqi Ye

Affiliation: Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose:
Limited-angle CBCT (LA-CBCT) scans are often the only option for non-coplanar radiation therapy to prevent potential mechanical collisions. However, the consecutive angular occlusion of pr...

Identification of Potential Patients for Resimulation and Adaptive Planning By Machine Learning

Authors: Mark Ashamalla, Renee Farrell, Jinkoo Kim, Kartik Mani, Xin Qian, Samuel Ryu, Yizhou Zhao

Affiliation: Stony Brook Medicine, Stony Brook University Hospital

Abstract Preview: Purpose: Adaptive planning is increasingly used in head and neck radiation therapy due to factors like tumor response or changes in patient anatomy. However, methods such as resimulation or offline re...

Iguard: A Fully Unsupervised Image-Guidance Anomaly Recognition and Detection Framework in CBCT-Guided Radiotherapy.

Authors: James M. Lamb, Dishane Chand Luximon, Jack Neylon, Rachel Petragallo, Moritz Ritter, Timothy Ritter

Affiliation: Department of Radiation Oncology, University of California, Los Angeles, ETH Zurich, VCU Health System, Department of Radiation Oncology, University of Colorado

Abstract Preview: Purpose: Anomalies in cone beam computed tomography (CBCT) radiotherapy image guidance can signal treatment deviations. Repetitive review of setup image registrations by humans is inefficient, prone t...

Implementing a Learning-to-Optimize Machine Learning Framework to Accelerate VMAT Treatment Planning Optimization for Prostate Cancer

Authors: Ara Alexandrian, Sadiki Daniel

Affiliation: Louisiana State University, Mary Bird Perkins Cancer Center

Abstract Preview: Purpose: To develop a learning-to-optimize machine learning model that accelerates optimization in VMAT treatment planning by training on prostate patient data.
Methods: A treatment plan dataset of...

Integrating Radiomics and ADC Ratio for Multicenter Prostate Cancer Diagnosis: A Harmonized Machine Learning Approach

Authors: George Agrotis, Marios Myronakis, Dimitrios Samaras, Kyriaki Theodorou, Ioannis Tsougos, Vassilios Tzortzis, Maria Vakalopoulou, Alexandros Vamvakas, Aikaterini Vassiou, Marianna Vlychou

Affiliation: Medical Physics Department, Medical School, University of Thessaly, Department of Radiology, University of Thessaly, Netherland Cancer Institute, Department of Urology, University of Thessaly, CentraleSupelec, University Paris-Saclay

Abstract Preview: Purpose: Prostate cancer (PCa) diagnosis remains challenging due to discrepancies in Gleason Scoring (GS) and risks of overdiagnosis and underdiagnosis. Multiparametric MRI (mpMRI), including Apparent...

Inter-Machine Harmonization in Echocardiographic Videos for Predicting Left Ventricular Ejection Fraction

Authors: Akihiro Haga, Ren Iwasaki, Kenya Kusunose, Makoto Miyake, Kenji Moriuchi, Yasuharu Takeda, Hidekazu Tanaka, Hirotsugu Yamada

Affiliation: Department of Cardiovascular Medicine, Nephrology, and Neurology Graduate School of Medicine, University of the Ryukyus, Graduate School of Biomedical Sciences, Tokushima University, Tokushima university, Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Department of Cardiology, Tenri Hospital, Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Division of Heart Failure, Department of Heart Failure and Transplant, National Cerebral and Cardiovascular Center

Abstract Preview: Purpose: Device dependency is a significant challenge in medical AI, potentially limiting generalization performance. This study aimed to develop a robust deep learning model for predicting left ventr...

Investigating the Multimodal Fusion Techniques to Improve Prediction Accuracy of Biochemical Recurrence of Prostate Cancer

Authors: Clint Bahler, Ruchika Reddy Chimmula, Harrison Louis Love, Oluwaseyi Oderinde, Courtney Yong

Affiliation: Purdue University, Department of Urology, Indiana University School of Medicine, Advanced Molecular Imaging in Radiotherapy (AdMIRe) Research Laboratory, School of Health Sciences, Purdue University

Abstract Preview: Purpose: Prostate cancer (PCa) is a common malignancy in men, and predicting biochemical recurrence (BCR) is crucial for guiding treatment decisions. Integrating multimodal data, including clinical, i...

Investigation and Machine-Learning Modeling of Dosimetric Discrepancies in Eclipse-Calculated Head and Neck Treatment Plans

Authors: Andres Portocarrero Bonifaz, Ian Schreiber

Affiliation: CARTI Cancer Center

Abstract Preview: Purpose: To explore how calculation grid resolution, along with other planning factors, affects head and neck dose calculation accuracy and contributes to potential discrepancies in the Eclipse Treatm...

Is Simplicity Even Better: Deep Learning Algorithms for Breath Motion Phase Prediction in Motion Management

Authors: Amanda J. Deisher, Andrew YK Foong, Witold Matysiak, Jing Qian, Xueyan Tang, Erik J. Tryggestad, Mi Zhou

Affiliation: Mayo Clinic

Abstract Preview: Purpose: Phase gating is commonly employed to mitigate the impact of tumor motion in radiotherapy. Due to the machine-specific time delay between triggering and radiation delivery, the triggering sign...

Key Tumor Volume Zones for Advancing the Radiomics-Based Distant Recurrence Prediction

Authors: Ryan Alden, Tithi Biswas, Kaushik Halder, Felix Maria-Joseph, Michael Mix, Rihan Podder, Tarun Kanti Podder

Affiliation: SUNY Upstate Medical University, IIT-Roorkee, University of Florida

Abstract Preview: Purpose: Radiomics feature-based model for predicting distant recurrence can potentially provide critical insight for clinical decision-making and assistance in treatment strategies. This study focuse...

Learning from Failures – Case Studies into Failing Patient Specific Quality Assurance Plans

Authors: Christopher S. Melhus, Elizabeth Meyer, Cassandra Stambaugh

Affiliation: Tufts Medical Center

Abstract Preview: Purpose: To investigate the clinical treatment planning parameters that impact patient-specific quality assurance (PSQA) passing rates for hippocampal avoidance whole brain (HAWB) treatment plans.
...

MRI Radiomics-Based Machine Learning Model for Predicting BNCT Treatment Response in Glioblastoma

Authors: Huang Chi-Shiuan, Wu Chih-Chun, Hui-Yu Cathy Tsai, Chen Yan-Han, Chen Yi-Wei, Pan Yi-Ying

Affiliation: Institute of Nuclear Engineering and Science, National Tsing Hua University, Taipei Veterans General Hospital, Tri-Service General Hospital

Abstract Preview: Purpose:
This study aims to develop and validate a machine learning (ML) model based on MRI-derived radiomic features to predict progressive disease (PD) in glioblastoma (GBM) patients four months ...

Machine Learning Knowledge Based Planning Model for Hypo Fractionated Prostate/Prostate Lymph Nodes Treatments

Authors: Nina Burbure, Tawfik G. Giaddui, Shidong Li, Curtis Miyamoto, Jeremy Price, Bin Wang

Affiliation: FCCC at Temple University Hospital

Abstract Preview: Purpose: To evaluate the performance of KBP models for hypo-fractionated prostate and pelvic lymph nodes (LN) VMAT plans.
Methods: A KBP model (TUH KBP) was developed in Eclipse treatment planning ...

Machine Learning Model Evaluation and Interpretation

Authors: Kristy K. Brock

Affiliation: The University of Texas MD Anderson Cancer Center

Abstract Preview: N/A...

Machine Learning Model for Early Prediction of Chemoradiotherapy Response in Oropharyngeal Cancer Patients

Authors: Waleed Mutlaq Almutairi, Ke Colin Huang, Vishwas Mukundan, Christopher F. Njeh, Oluwaseyi Oderinde, Yong Yue

Affiliation: Purdue University, Indiana University School of Medicine, Department of Radiation Oncology, Advanced Molecular Imaging in Radiotherapy (AdMIRe) Research Laboratory, Purdue University, West Lafayette, Indiana, USA

Abstract Preview: Purpose:
This study aimed to develop a machine learning (ML) model for early prediction of chemoradiotherapy (CRT) response in order to enhance personalized treatment selection for oral or orophary...

Machine Learning for Radiation Therapy Treatment Planning

Authors: Qingrong Jackie Wu

Affiliation: Duke University Medical Center

Abstract Preview: N/A...

Mask Guided Diffusion Model for Metal Artifacts Reduction

Authors: Shusen Jing, Qihui Lyu, Dan Ruan, Ke Sheng, Qifan Xu

Affiliation: Department of Radiation Oncology, University of California, Los Angeles, University of California San Francisco, Department of Radiation Oncology, University of California, San Francisco

Abstract Preview: Purpose: Metallic implants can significantly distort sinograms, leading to severe artifacts in computed tomography (CT) reconstructions. Reconstructing CT images containing metal is fundamentally an i...

Mitigating Data-Driven Uncertainty in Machine Learning-Based Radiotherapy Outcome Prediction

Authors: Ali Ajdari, Alice Bondi, Thomas R. Bortfeld, Gregory Buti, Xinru Chen, Zhongxing Liao, Antony John Lomax, Ting Xu

Affiliation: The University of Texas MD Anderson Cancer Center, Department Of Radiation Oncology, Massachusetts General Hospital (MGH), Massachusetts General Hospital & Harvard Medical School, Paul Scherrer Institut, ETH Zurich

Abstract Preview: Title: Addressing Imaging and Biomarker-driven Uncertainty in Machine Learning-based Radiotherapy Outcome Prediction
Alice Bondi, Gregory Buti, Antony Lomax, Thomas Bortfeld, Xinru Chen, Ting Xu, Z...

Multi-Variat, Multi-Model, and Multi-Patient: From Pure Feasibility to Generalizability in Machine Learning Outcome Prediction Model-Based Treatment Plan Optimization

Authors: Martin Frank, Oliver JƤkel, Niklas Wahl

Affiliation: Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Karlsruhe Institute of Technology (KIT)

Abstract Preview: Purpose: Machine learning (ML) models on normal tissue complication and tumor control probability ((N)TCP) exploiting e.g. dosiomic and radiomic features are playing an increasingly important role in ...

Multimodal Data Integration with Machine Learning for Predicting PARP Inhibitor Efficacy and Prognosis in Ovarian Cancer

Authors: Qianxi Ni, Xian Xiong

Affiliation: The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University

Abstract Preview: Purpose:
Poly(ADP)-ribose polymerase inhibitors (PARPi) have brought a significant breakthrough in the maintenance treatment of ovarian cancer. However, beyond BRCA mutation/HRD, the direct impact ...

Optimizing Fractionation Schedules for De-Escalation Radiotherapy in Head and Neck Cancers Using Deep Reinforcement Learning

Authors: Zhongjie Lu

Affiliation: Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine

Abstract Preview: Purpose: Patients with locally-advanced head and neck squamous cell carcinomas(HNSCCs), particularly those related to human papillomavirus(HPV), often achieve good locoregional control(LRC), yet they ...

Optimizing Timing of Physics Consults for Proton Prostate Therapy: Improving Patient Experience and Operational Efficiency

Authors: Charles D. Bloch, Stephen R. Bowen, Bing-Hao Chiang, Alex Egan, Eric C. Ford, Sharareh Koufigar, Dominic A. Maes, Juergen Meyer, Sharon Pai, Frank Rafie, Rajesh Regmi, Jatinder Saini, George A. Sandison, Marco Schwarz, Bishwambhar Sengupta, Tony P. Wong

Affiliation: Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Department of Physics, University of Washington

Abstract Preview: Purpose: This study aimed to optimize the strategy and timing of physics consults for proton prostate patients to improve the patient experience and resource utilization in our radiation oncology depa...

PET Imaging and Novel Cardiac Radiomics to Predict Pre-Radiotherapy Cardiac Conditions for Lung Cancer Patients Undergoing Radiotherapy.

Authors: Wookjin Choi, Michael Dichmann, Adam Dicker, Nilanjan Haldar, Yingcui Jia, Nicole L Simone, Eugene Storozynsky, Yevgeniy Vinogradskiy, Maria Werner-Wasik

Affiliation: Thomas Jefferson University, 9Department of Radiation Oncology, Thomas Jefferson University

Abstract Preview: Purpose: Cardiotoxicity remains a significant limitation for lung cancer patients treated with radiotherapy. Pre-radiotherapy cardiac conditions increase the probability of patients developing cardiot...

Performance Evaluation of Patient Demographics Model-Based Liver Volumetry

Authors: Yasaman Anbari, Srinivas Cheenu Kappadath, Benjamin P. Lopez, Armeen Mahvash, Ali Yousefi

Affiliation: University of Houston, UT MD Anderson Cancer Center

Abstract Preview: Purpose: Patient-demographics-model-based liver volumetry is well-established for determining the future liver remnant following hepatectomy. We used gold-standard CT liver segmentation to validate th...

Predicting Brain V60% in Linac-Based Single-Isocenter-Multiple-Targets (SIMT) Stereotactic Radiosurgery Using Machine Learning

Authors: John Ginn, Zhuoyun Huang, Yongbok Kim, Ke Lu, Chunhao Wang, Yibo Xie, Zhenyu Yang, Jingtong Zhao

Affiliation: Duke University, Duke Kunshan University

Abstract Preview: Purpose: This study aims to develop and validate a machine learning model for predicting V60%, a critical dosimetric metric in LINAC-based Single-Isocenter-Multiple-Targets (SIMT) stereotactic radiosu...

Predicting CBCT-Based Adaptive Radiation Therapy Session Duration Using Machine Learning

Authors: Leslie Harrell, Sanjay Maraboyina, Romy Megahed, Maida Ranjbar, Xenia Ray, Pouya Sabouri

Affiliation: Department of Radiation Oncology, University of Arkansas for Medical Sciences (UAMS), University of California San Diego

Abstract Preview: Purpose: Real-time adaptive radiation therapy (ART) dynamically modifies patients’ treatment plan during delivery to account for anatomical and physiological variations. Addressing ART planning time v...

Predicting Hematologic Toxicity in Advanced Cervical Cancer Patients Using Interpretable Machine Learning Models Based on Radiomics and Dosimetrics

Authors: Qianxi Ni, Qionghui Zhou

Affiliation: The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University

Abstract Preview: Purpose:
This study aims to develop and evaluate interpretable machine learning models that use radiomic and dosimetric features to predict HT in advanced cervical cancer patients.
Methods:
R...

Predicting Hormone Receptor Status in Breast Cancer Using Mammographic and Sonographic Data and Machine Learning Models

Authors: Zahra Bagherpour, Manijeh Beigi, Pedram Fadavi, Faraz Kalantari, Moghadaseh Khaleghibizaki, Hengameh Nazari, Mojtaba Safari, Sepideh Soltani

Affiliation: Department of Radiation Oncology, School of Medicine, Iran University of Medical Sciences, Department of Radiation Oncology, School of Medicine, Emory University and Winship Cancer Institute, Department of Radiation Oncology, Iran University of Medical Sciences, University of Arkansas for medical sciences, Department of Radiation physics, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences

Abstract Preview: Purpose: This study aims to evaluate whether readily available mammographic and sonographic data, combined with machine learning (ML) models, can predict critical molecular factors (ER, PR, HER2) in b...

Predicting Proton Therapy Dose Delivery Accuracy: A Machine Learning Approach Using Iroc’s Proton Phantom Data

Authors: Lian Duan, Stephen F. Kry, Hunter S. Mehrens, Paige A. Taylor

Affiliation: The University of Texas MD Anderson Cancer Center, UT MD Anderson Cancer Center

Abstract Preview: Purpose: To develop a machine learning model for predicting dose delivery accuracy and identifying its key factors in IROC’s proton phantom program.
Methods: IROC’s proton QA program has six proton...

Prior-Adapted Progressive Motion-Resolved CBCT Reconstruction Using a Dynamic Reconstruction and Motion Estimation Method

Authors: Hua-Chieh Shao, You Zhang, Ruizhi Zuo

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Cone-beam CT (CBCT) provides on-board patient anatomy for image guidance and treatment adaptation in radiotherapy. However, to compensate for respiration-induced anatomical motion, motion-res...

Quality and Performance Advantages of a Machine Learning-Assisted Framework for IMRT Fluence Map Optimization

Authors: Yang Sheng, Qingrong Jackie Wu, Qiuwen Wu, Xin Wu, Dongrong Yang

Affiliation: Duke University Medical Center

Abstract Preview: Purpose: Gradient-based optimization is the standard approach for IMRT fluence map optimization (FMO). Recently, a machine learning (ML)-assisted framework using a one-layer neural network was propose...

Reinforcement Learning Based Machine Parameter Optimization for Two-Arc Prostate VMAT Planning

Authors: William T. Hrinivich, Junghoon Lee, Lina Mekki

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Department of Biomedical Engineering, Johns Hopkins University, Johns Hopkins University

Abstract Preview: Purpose: Volumetric modulated arc therapy (VMAT) planning is a computationally expensive process. In this work, we propose a reinforcement learning (RL) framework to automatically optimize dose rate a...

Reliable Markerless Lung Tumor Tracking with Built-in Patient-Specific Quality Assurance

Authors: Weixing Cai, Laura I. Cervino, Qiyong Fan, Yabo Fu, Tianfang Li, Xiang Li, Jean M. Moran, Hai Pham, Pengpeng Zhang

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: AAPM Task Group Report 273 emphasizes the importance of rigorous validation to ensure the generalizability and robustness of machine learning-based clinical tools before their implementation ...

Respiratory Monitoring in Human Subjects Using a Low-Cost Optical Imaging System Prototype

Authors: Marian Axente, Mandeep Kaur

Affiliation: Emory University

Abstract Preview: Purpose: To validate a low-cost optical imaging system for respiratory monitoring by comparing its accuracy and feasibility against the clinical gold standard in human subjects.
Methods: Following ...

Spatial Dosimetric-Based Prediction of Long-Term Urinary Toxicity after Permanent Prostate Brachytherapy

Authors: Rajeev K. Badkul, Ronald C Chen, Ying Hou, Harold Li, Chaoqiong Ma, Jufri Setianegara

Affiliation: Department of Radiation Oncology, University of Kansas Medical Center

Abstract Preview: Purpose:
Postimplant urinary toxicity is common in prostate low-dose-rate (LDR) brachytherapy. We developed a machine learning (ML) model to explore the correlation between spatial dose distributio...

Towards AI Decision-Support for Online Adaptive Radiotherapy (oART): A Preliminary Study on CBCT-Guided Post-Prostatectomy Oart

Authors: Michael Cummings, Olga M. Dona Lemus, Hana Mekdash, Tyler Moran, Alexander R Podgorsak, Sean M. Tanny, Matthew J. Webster, Lexiang Yang, Dandan Zheng, Yuwei Zhou, Xiaofeng Zhu

Affiliation: Department of Radiation Oncology, University of Rochester, University of Miami, Inova Schar Cancer Institute, University of Rochester

Abstract Preview: Purpose: oART is revolutionizing radiotherapy by allowing treatment plans to be adjusted based on daily imaging, improving targeting precision and potentially enhancing patient outcomes. However, its ...

Transformer-Based Proton Dose Prediction with and without Diffusion Process

Authors: Jing Qian, Brandon Reber, David M. Routman, Satomi Shiraishi

Affiliation: Mayo Clinic

Abstract Preview: Purpose: The dose distribution in proton radiotherapy (PRT) is characterized by sharp gradients, posing a challenge for machine learning-based dose prediction. While denoising with diffusion processes...

Two-Stage Clustering and Auto Machine Learning to Predict Chemoradiation Response in Tumor Subregions on FDG PET for La-NSCLC

Authors: Stephen R. Bowen, Shijun Chen, Chunyan Duan, Daniel S. Hippe, Qiantuo Liu, Qianqian Tong, Jiajie Wang, Shouyi Wang, Faisal Yaseen

Affiliation: The University of Texas at Austin, Tongji University, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Fred Hutchinson Cancer Center, University of Texas at Arlington

Abstract Preview: Purpose: Tumor subregion clustering and prediction of region-specific response can augment assessments and adaptive treatment decisions. A modeling framework was constructed to predict chemoradiation ...

Unidose: A Universal Framework for IMRT Dose Prediction

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Zi Yang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose: Dose prediction (DP) is essential in guiding radiotherapy planning. However, current DP models for intensity-modulated radiation therapy (IMRT) primarily rely on fixed-beam orientations and a...

Using Machine Learning to Predict Esophagitis Risk in Lung Cancer Radiotherapy Based on Clinical and Dosimetric Factors

Authors: Ibtisam Almajnooni, Siyong Kim, Nathaniel Miller, Elisabeth Weiss, Lulin Yuan

Affiliation: Virginia Commonwealth University

Abstract Preview: Purpose: Radiation-induced esophagitis (RE) is a common concern in lung cancer IMRT. Recent studies have indicated that the risk of radiation side effects varies greatly with patients’ baseline clinic...

Utilizing Large Language Models for Efficient and Accurate Clinical Data Enrichment

Authors: Ara Alexandrian, Jessica Ashford, Jean-Guy Belliveau, Allison Dalton, Nathan Dobranski, Krystal M. Kirby, Garrett M. Pitcher, David E. Solis, Hamlet Spears, Angela M. Stam, Sotirios Stathakis, Jason Stevens, Rodney J. Sullivan, Sean Xavier Sullivan, Natalie N. Viscariello

Affiliation: Louisiana State University, Mary Bird Perkins Cancer Center, The University of Alabama at Birmingham, University of Alabama at Birmingham

Abstract Preview: Purpose: To improve retrospective risk analysis in radiation oncology by leveraging Large Language Models (LLMs) to extract richly annotated data from unstructured clinical incident reports.
Method...

VMAT Machine Parameter Optimization Using Policy Gradient Reinforcement Learning

Authors: Avinash Mudireddy, Nathan Shaffer, Joel J. St-Aubin

Affiliation: University of Iowa

Abstract Preview: Purpose: This work demonstrates preliminary results in training a reinforcement learning (RL) network to perform VMAT machine parameter optimization.
Methods: We implemented a policy gradient RL al...

Weak-to-Strong Generalization for Interpretable Deep Learning-Based Histological Image Classification Guided By Hand-Crafted Features

Authors: Mark Anastasio, Zong Fan, Hua Li, Changjie Lu, Lulu Sun, Xiaowei Wang, Zhimin Wang, Michael Wu

Affiliation: University of Illinois at Urbana-Champaign, University of Illinois at Chicago, Washington University School of Medicine, University of Illinois Urbana-Champaign, Washington University in St. Louis, University Laboratory High School

Abstract Preview: Purpose: Histological whole slide images (WSIs) are vital in clinical diagnosis. Although deep learning (DL) methods have achieved great success in this task, they often lack interpretability. Traditi...

ā€œSeeā€ through Surface: Transforming Surface Imaging into a Real-Time Three-Dimensional Imaging Solution for Intra-Treatment Image Guidance

Authors: Steve B. Jiang, Ruiqi Li, Hua-Chieh Shao, Kenneth Westover, You Zhang, Tingliang Zhuang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Respiratory motion is a long-standing challenge for lung SBRT, particularly for centrally-located lung tumors where increased toxicity demands more precise motion management during treatme...