Search Submissions 🔎

Results for "mrsi reconstruction": 21 found

A Dynamic Reconstruction and Motion Estimation Framework for Cardiorespiratory Motion-Resolved Real-Time Volumetric MR Imaging (DREME-MR)

Authors: Jie Deng, Xiaoxue Qian, Hua-Chieh Shao, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Based on a 3D pre-treatment MRI scan, we developed DREME-MR to jointly reconstruct the reference patient anatomy and a data-driven, patient-specific cardiorespiratory motion model. Via a moti...

A Ground Truth Label-Mediated Method for Improved Bone and Gas Cavity Definition for MRI-Guided Online Adaptive Radiotherapy Workflows Using Synthetic CT Images.

Authors: Benito De Celis Alonso, Braian Adair Maldonado Luna, Gerardo Uriel Perez Rojas, René Eduardo Rodríguez-Pérez, Kamal Singhrao

Affiliation: Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Faculty of Physics and Mathematics, Benemérita Universidad Autónoma de Puebla

Abstract Preview: Purpose: Artificial Intelligence (AI)-generated synthetic CT (sCT) images can be used to provide electron densities for dose calculation for online adaptive MRI-guided stereotactic body radiotherapy (...

Adversarial Diffusion-Based Self-Supervised Learning for High-Resolution MR Imaging

Authors: Zachary Buchwald, Chih-Wei Chang, Zach Eidex, Richard L.J. Qiu, Mojtaba Safari, Shansong Wang, Xiaofeng Yang, David Yu

Affiliation: Emory University and Winship Cancer Institute, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: MRI offers excellent soft tissue contrast for diagnosis and treatment but suffers from long acquisition times, causing patient discomfort and motion artifacts. To accelerate MRI, supervised d...

Biomechanically Informed Diagnostic-to-Synthetic CT Transformation for Expedited Radiation Therapy Planning

Authors: Liyuan Chen, Steve Jiang, Chenyang Shen

Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center

Abstract Preview: Purpose: Delays in radiation therapy (RT) initiation caused by conventional CT simulation processes can hinder timely treatment delivery and patient outcomes. This study proposes a Virtual Treatment S...

Comparative Analysis of Nine Deep Learning Architectures for Variable Density Grappa 1H Magnetic Resonance Spectroscopy Imaging (MRSI) Reconstruction

Authors: Kimberly Chan, Anke Henning, Mahrshi Jani, Andrew Wright, Xinyu Zhang

Affiliation: Advanced Imaging Research Center (AIRC), UT Southwestern Medical Center

Abstract Preview: Purpose: To evaluate the performance of multiple deep learning architectures for MRSI reconstruction and determine their effectiveness in maintaining high-resolution metabolite mapping while reducing ...

Decoupling Cardiorespiratory Motion of Cardiac Substructures Via 5D-MRI for Radiotherapy

Authors: Carri K. Glide-Hurst, Thomas M Grist, Kevin M. Johnson, Prashant Nagpal, Tarun Naren, Chase Ruff, Oliver Wieben, Jiwei Zhao

Affiliation: Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Department of Radiology, University of Wisconsin-Madison, Department of Medical Physics, University of Wisconsin-Madison, Departments of Human Oncology and Medical Physics, University of Wisconsin-Madison

Abstract Preview: Purpose: Cardiotoxicity is a devastating side effect for thoracic radiotherapy (RT). Currently, standard RT imaging is insufficient to decouple cardiorespiratory motion, limiting substructure-specific...

Enhancing Radiation Oncology Imaging with a Novel Variational Model Decomposition, Radon Transformation, and Kohonen Self-Organizing Map Denoising Framework

Authors: Hassan Bagher-Ebadian, Justine M. Cunningham, Anthony J. Doemer, Mohammad M. Ghassemi, Joshua P. Kim, Benjamin Movsas, Kundan S Thind

Affiliation: Michigan State University, Henry Ford Health

Abstract Preview: Purpose: Reduction of noise in medical images critically enables improved accuracy in delineating tumors and organs at risk, leading to more precise treatment planning and safer image-guided radiation...

Enhancing T2-Weighted Brain MRI Resolution across Orientations Using AI-Based Volumetric Reconstruction

Authors: Mengqi Shen, Meghna Trivedi, Tony J.C. Wang, Andy (Yuanguang) Xu, Yading Yuan

Affiliation: Columbia University Medical Center, Dept of Med Hematology & Oncology, Data Science Institute at Columbia University, Columbia University Irving Medical Center, Department of Radiation Oncology, Columbia University Irving Medical Center

Abstract Preview: Purpose: T2-weighted (T2w) images are critical for identifying pathological changes due to their superior contrast in differentiating tissue types. However, they often lack detailed anatomical resolut...

Evaluation of an Adaptive Denoising Diffusion Probabilistic Model (DDPM) for Fast MRI in Radiotherapy Planning of Pediatric Brain Tumors

Authors: Chia-Ho Hua, Jirapat Likitlersuang, Jinsoo Uh

Affiliation: St. Jude Children's Research Hospital

Abstract Preview: Purpose: AI-based fast MRI, which reconstructs images from undersampled k-space data, has not yet been tailored for RT planning. This study aims to evaluate the fast MRI performance of our recently pr...

Generalized 2D Cine Multi-Modal MRI-Based Dynamic Volumetric Reconstruction Using Motion-Aligned Implicit Neural Network with Spatial Prior Embedding

Authors: Ming Chao, Karyn A Goodman, Yang Lei, Tian Liu, Jing Wang, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai

Abstract Preview: Purpose: Real-time volumetric MRI is essential for motion management in MRI-guided radiotherapy (MRIgRT), yet acquiring high-quality 3D images remains challenging due to time constraints and motion ar...

Geometrically Derived Density Compensation Function for 3D Non-Cartesian MRI Reconstruction

Authors: Oluyemi Bright Aboyewa, KyungPyo Hong, Daniel Kim

Affiliation: Department of Radiology, Northwestern University

Abstract Preview: Purpose: While non-Cartesian MRI is desirable for fast imaging with high spatial resolution and robustness to motion, it requires long post-processing times. Preconditioning with an adequate density c...

High-Temporal Dynamic CBCT Imaging Via Gaussian Neural Representation

Authors: Weixing Cai, Laura I. Cervino, Yabo Fu, Licheng Kuo, Tianfang Li, Xiang Li, Jean M. Moran, Huiqiao Xie, Hao Zhang

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: This study introduces a novel spatiotemporal Gaussian neural representation framework to reconstruct high-temporal dynamic CBCT images from 1-minute acquisition, preserving motion dynamics an...

Investigate Deep-Learned MRI Reconstruction with Data Consistency Mechanism and Task-Informed Loss

Authors: Mark Anastasio, Hua Li, Zhuchen Shao

Affiliation: Washington University School of Medicine, University of Illinois Urbana-Champaign

Abstract Preview: Purpose: Ill-conditioned reconstruction problems in medical imaging, such as those arising from undersampled k-space data in MRI, can result in degraded image quality and clinical task-orientated perf...

Micro-Ultrasound Guided Focal Prostate Radiotherapy: Development and Testing of a Novel Device.

Authors: Kevin Barker, David Jeffrey Contella, Chandima Edirisinghe, Aaron Fenster, Douglas A Hoover, Elizabeth Huynh

Affiliation: Robarts Research Institute, University of Western Ontario, London Health Sciences Center, Department of Radiation Oncology, London Health Sciences Centre

Abstract Preview: Purpose: We aim to develop a system that integrates micro-ultrasound into focal prostate cancer radiotherapy. This requires developing a mechatronic stepper capable of performing motorized rotation of...

Motion Correction-Driven Patient-Specific 2D Cine MRI-Based Dynamic Volumetric Reconstruction for MRI-Guided Radiotherapy Intra-Fractional Motion Monitoring

Authors: Karyn A Goodman, Yang Lei, Tian Liu, D. Michael Lovelock, Charlotte Elizabeth Read, Jing Wang, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai

Abstract Preview: Purpose: Real-time volumetric MRI is essential for precise motion management in MRI-guided radiotherapy (MRIgRT). While 2D Cine MRI offers high temporal resolution for motion tracking, it inherently l...

Neural Implicit K-Space for Accelerated Patient-Specific Non-Cartesian MRI Reconstruction

Authors: Daniel O Connor, Mary Feng, Hui Lin, Hengjie Liu, Xin Miao, Michael Ohliger, Jess E. Scholey, Ke Sheng, DI Xu, Wensha Yang, Yang Yang

Affiliation: UCSF, University of California, Los Angeles, Department of Radiation Oncology, University of California San Francisco, Department of Radiation Oncology, University of California, San Francisco, Department of Radiation Oncology, University of California at San Francisco, University of San Francisco, Department of Radiology, University of California, San Francisco, University of California San Francisco, Siemens Medical Solutions USA Inc.

Abstract Preview: Purpose: The scanning time for a fully sampled MRI is lengthy. Compressed sensing (CS) has been developed to minimize image artifacts in accelerated scans, but the required iterative reconstruction is...

Patient-Specific Ultra-Sparse k-Space Reconstruction Using Motion Decomposition and Sinusoidal Representation Networks for Dynamic Volumetric MRI in Radiotherapy

Authors: Karyn A Goodman, Yang Lei, Tian Liu, Charlotte Elizabeth Read, Jing Wang, Qian Wang, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai, Department of Radiation Oncology, Beth Israel Deaconess Medical Center

Abstract Preview: Purpose: Accurate motion management in MRI-guided radiotherapy (MRIgRT) relies on real-time volumetric MRI to track intra-fractional anatomical changes. Dense k-space sampling, while capable of produc...

Rapid Reconstruction of Extremely Accelerated Liver 4D MRI Via Chained Iterative Refinement

Authors: Mary Feng, Yi Lao, Hui Lin, Hengjie Liu, Xin Miao, Michael Ohliger

Affiliation: University of California, Los Angeles, Department of Radiation Oncology, University of California San Francisco, Department of Radiation Oncology, City of Hope National Medical Center, University of California San Francisco, Siemens Medical Solutions USA Inc.

Abstract Preview: Purpose: 4D MRI with high spatiotemporal resolution is vital to characterize the tumor/tumor motion for liver radiotherapy. However, high-quality 4D MRI requires an impractically long scanning time fo...

Simulation Design of a Dedicated Head Coil for Enhanced EPT Imaging to Map the Electrical Properties of Tumor Tissues

Authors: Jingyao Chen, Yingli Yang, Jie Zhang

Affiliation: Department of Radiology, Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai United imaging Healthcare Advanced Technology Research Institute

Abstract Preview: Purpose: Magnetic Resonance Electrical Properties Tomography (MR EPT) is a method to spatially mapping the conductivity and permittivity based on small B1 field changes after the imaged object was int...

Standardized MRI-CT Hybrid Workflow for High-Dose-Rate Image-Guided Adaptive Brachytherapy in Cervical Cancer: Aapm TG-303 Implementation

Authors: Kim Creach, Kim Howard, Julius G. Ojwang, Richard A. Shaw, Neelu Soni

Affiliation: Mercy Hospital Springfield

Abstract Preview: Purpose: To present a standardized MRI-CT hybrid workflow for High-Dose-Rate (HDR) Image-Guided Adaptive Brachytherapy (IGBT) in cervical cancer, aligned with AAPM TG-303, as a model to assist with im...

Synthetic CT Generation from a Cycle Diffusion Model Based Framework for Ultrasound-Based Prostate HDR Brachytherapy

Authors: Michael Baine, Charles Enke, Yang Lei, Yu Lei, Ruirui Liu, Su-Min Zhou

Affiliation: Icahn School of Medicine at Mount Sinai, University of Nebraska Medical Center, Department of Radiation Oncology, University of Nebraska Medical Center

Abstract Preview: Purpose: This study presents a framework for generating synthetic CT images using a Cycle Diffusion model, which can be utilized to enhance needle conspicuity in ultrasound-guided prostate HDR brachyt...