Search Submissions 🔎

Results for "multi contrast": 35 found

A Method to Expedite Quality Assurance for Head and Neck Ctvs with Lymph Node Level Auto-Autocontouring and Identification

Authors: Beth M. Beadle, Adrian Celaya, Laurence Edward Court, David Fuentes, Anna Lee, Tze Yee Lim, Dragan Mirkovic, Amy Moreno, Raymond Mumme, Tucker J. Netherton, Callistus M. Nguyen, Jaganathan A Parameshwaran, Jack Phan, Carlos Sjogreen, Sara L. Thrower, Congjun Wang, He C. Wang, Xin Wang

Affiliation: Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Department of Radiation Oncology, Stanford University, The University of Texas MD Anderson Cancer Center, MD Anderson Cancer Center, MD Anderson, Rice University, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center

Abstract Preview: Purpose: Quality assurance of target volumes from radiotherapy clinical trials is a labor and resource intensive task. The purpose of this work is to quantify the accuracy of a tool that automatically...

A Vision-Language Model for T1-Contrast Enhanced MRI Generation for Glioma Patients

Authors: Zachary Buchwald, Zach Eidex, Richard L.J. Qiu, Justin R. Roper, Mojtaba Safari, Hui-Kuo Shu, Xiaofeng Yang, David Yu

Affiliation: Emory University and Winship Cancer Institute, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Gadolinium-based contrast agents (GBCA) are commonly used for patients with gliomas to delineate and characterize the brain tumors using T1-weighted (T1W) MRI. However, there is a rising conc...

Addressing Missing MRI Sequences: A DL-Based Region-Focused Multi-Sequence Framework for Synthetic Image Generation

Authors: Amir Abdollahi, Oliver Jäkel, Maxmillian Knoll, Rakshana Murugan, Adithya Raman, Patrick Salome

Affiliation: UKHD & DKFZ, Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), German Cancer Research Centre(DKFZ), DKFZ, MGH

Abstract Preview: Purpose:
Missing MRI sequences, due to technical issues in data handling or clinical constraints like contrast agent intolerance, limit the use of medical imaging datasets in computational analysis...

Advancing Magnetic Resonance Imaging (MRI) Safety Clearance: Utilizing Dual-Energy CT (DECT) Material Decomposition for Foreign Object Assessment

Authors: Anzi Zhao

Affiliation: Northwestern Medicine

Abstract Preview: Purpose: This study investigates the utility of Dual-Energy Computed Tomography (DECT) material decomposition in resolving Magnetic Resonance Imaging (MRI) safety concerns for patients with unidentifi...

Adversarial Diffusion-Based Self-Supervised Learning for High-Resolution MR Imaging

Authors: Zachary Buchwald, Chih-Wei Chang, Zach Eidex, Richard L.J. Qiu, Mojtaba Safari, Shansong Wang, Xiaofeng Yang, David Yu

Affiliation: Emory University and Winship Cancer Institute, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: MRI offers excellent soft tissue contrast for diagnosis and treatment but suffers from long acquisition times, causing patient discomfort and motion artifacts. To accelerate MRI, supervised d...

Assessing Low Iodine Concentrations in Liver Lesions with Dual Energy CT: Impact of Beam Choices

Authors: Xinhua Li, Vu Nguyen, Yifang (Jimmy) Zhou

Affiliation: Cedars-Sinai Medical Center

Abstract Preview: Purpose: Assessing iodine concentration in liver lesions is essential for evaluating contrast enhancement in multi-phase liver CT and for accurate disease diagnosis. This study aims to evaluate the as...

Assessment of Material Discrimination Slopes in Dual Energy CT Imaging

Authors: Izabella L. Barreto, Aroon Pressram

Affiliation: University of Florida College of Medicine, University of Florida

Abstract Preview: Purpose: Our clinical dual energy CT (DECT) head protocol reconstructs iodine-suppressed virtual non-contrast (VNC) images using the vendor-recommended slope for material discrimination. However, this...

BEST IN PHYSICS IMAGING: Cross-Contrast Diffusion: A Synergistic Approach for Simultaneous Multi-Contrast MRI Super-Resolution

Authors: Yifei Hao, Wenxuan Li, Xiang Li, Tao Peng, Yulu Wu, Fang-Fang Yin, Yue Yuan, Lei Zhang, Yaogong Zhang

Affiliation: Duke University, School of Future Science and Engineering, Soochow University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Diffusion-based deep-learning frameworks have been recently used in MRI resolution enhancement, or super-resolution. Multi-contrast MRI share common anatomical structures while holding comple...

BEST IN PHYSICS MULTI-DISCIPLINARY: Foundation Model-Empowered Unsupervised 3D Deformable Medical Image Registration

Authors: Xianjin Dai, PhD, Zhuoran Jiang, Lei Ren, Lei Xing, Zhendong Zhang

Affiliation: University of Maryland School of Medicine, Department of Radiation Oncology, Stanford University, Duke University, Stanford University

Abstract Preview: Purpose: Unsupervised deep learning has shown great promise in deformable image registration (DIR). These methods update model weights to optimize image similarity without necessitating ground truth d...

Biomechanically Guided Deep Learning for Deformable Multimodality Liver Registration Framework

Authors: Yunfei Dong, Dongyang Guo, Zhenyu Yang, Fang-Fang Yin, Zeyu Zhang

Affiliation: Duke University, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose:
To develop a Biomechanically Guided Deep Learning Registration Network (BG-DRNet) that improves both accuracy and physiological plausibility in liver image registration. While cone-beam CT...

Brain Tumor Segmentation from Multi-Parametric MRI with Integrated Evidential Uncertainty Estimation

Authors: Sahaja Acharya, Matthew Ladra, Junghoon Lee, Lina Mekki

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Department of Biomedical Engineering, Johns Hopkins University

Abstract Preview: Purpose: Multi-parametric MRI (mpMRI) is widely used for deep learning (DL)-based automatic segmentation of brain tumors. While multi-contrast images concatenated as channels are typically input to ne...

Comparitive Case Analysis of Maa Mapping and Angiographic Iodinated Contrast for Y-90 SIRT Treatment Planning

Authors: Shengwen Deng, Sven L. Gallo, Robert S. Jones, David W. Jordan, Arashdeep Kaur, Aishwarya M. Kulkarni, Quibai Li, William R.M. Pedersen

Affiliation: Department of Radiology, University Hospitals Cleveland Medical Center; School of Medicine, Case Western Reserve University, Department of Radiology, Radiation Safety, University Hospitals Cleveland Medical Center, Department of Radiology, Radiation Safety, University Hospitals Cleveland Medical Center; School of Medicine, Case Western Reserve University; Department of Radiology, Louis Stokes Cleveland VA Medical Center

Abstract Preview: Purpose:
Y-90 (Yttrium) SIRT radioembolization takes advantage of delivering localized radiation to the liver. Pre-treatment dosimetry is highly dependent on accurate MAA mapping, which may have an...

Demystifying Magnetic Resonance Imaging: Targeted Educational Initiatives for Medical Physicists in Türkiye and Preclinical Medical Students in the United States

Authors: Samuel A. Einstein, Jesutofunmi Fajemisin, Evren O. Göksel, Görkem O. Güngör, Marthony Robins, Travis C. Salzillo, Charles R. Thomas, Turgay Toksay, Joseph Weygand, Yue Yan

Affiliation: Acibadem MAA University, Department of Radiation Oncology and Applied Science, Dartmouth Health, Dartmouth College, Moffitt Cancer Center, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Penn State College of Medicine, Bursa Ali Osman Sönmez Oncology Hospital

Abstract Preview: Purpose: Magnetic resonance imaging (MRI) is an indispensable clinical tool, offering unparalleled soft tissue contrast critical for diagnosing and managing a wide range of conditions. However, its co...

Developing a Dataset for Investigations into the Impact of CT Acquisition and Reconstruction Conditions on Quantitative Imaging Using Paired Image Quality and Radiomics Phantom Data

Authors: Morgan A. Daly, David J. Goodenough, Andrew M. Hernandez, John M. Hoffman, Joshua Levy, Michael F. McNitt-Gray, Ali Uneri, Bino Varghese

Affiliation: University of California, George Washington University, David Geffen School of Medicine at UCLA, Johns Hopkins Univ, University of Southern California, The Phantom Laboratory

Abstract Preview: Purpose: Quantitative imaging is affected by CT acquisition and reconstruction conditions, limiting robustness in multi-site or -scanner studies. This work aimed to develop a dataset that will enable ...

Development and Validation of Novel Two-Stage Vascular Segmentation Model for Interventional Angiography

Authors: Abid Khan, Chad Klochko, Michael J Kovalchick, Hyeok Jun Lee, Hani Nasr, Krishnan Shyamkumar, Kundan S Thind

Affiliation: Henry Ford Radiology, Wayne State University, Henry Ford Health, HFHS

Abstract Preview: Purpose: Automated vascular segmentation in interventional angiography is challenged by contrast kinetics, vessel variations, and 2D projections, limiting the effectiveness of single-model approaches....

Establishing Tumor Size-Dependent Contrast Requirements for Multi-Target Biology-Guided Radiation Therapy (BgRT)

Authors: Muhammad Ramish Ashraf, Girish Bal, Daniel Pham, Murat Surucu

Affiliation: RefleXion Medical, Department of Radiation Oncology, Stanford University School of Medicine, Stanford University

Abstract Preview: Purpose: To determine minimum target size and FDG contrast thresholds for reliable Biology-guided Radiation Therapy (BgRT) delivery using a systematic phantom study.
Methods: A custom 3D-printed ph...

Evaluating the Capabilities of Hypersight CBCT for Advanced Dual-Energy CBCT Imaging in Online Adaptive Radiotherapy

Authors: Yi-Fang Wang, Yading Yuan

Affiliation: Columbia University Irving Medical Center, Department of Radiation Oncology, Columbia University Irving Medical Center

Abstract Preview: Purpose: HyperSight, the latest CBCT technology from Varian Medical Systems, integrates rapid 6-second data acquisition with advanced iterative reconstruction and upgraded hardware. Previous studies h...

Evaluation of Noise and Dose Efficiency in Clinical Photon-Counting CT Colonography with Tin Prefiltration

Authors: Xinhui Duan, Vivek Nair, Liqiang Ren, KyuHo Song, Vasantha Vasan, Kuan Zhang, Yue Zhang

Affiliation: Department of Radiology, UT Southwestern Medical Center

Abstract Preview: Purpose: Minimizing radiation dose is crucial in CT colonography (CTC) screening and diagnosis. Tin (Sn) prefiltration is readily incorporated into clinical photon-counting CT (PCCT) scanners, yet its...

From Noisy Signals to Accurate Maps: Transforming Look-Locker MRI with an Intelligent T₁ Estimation

Authors: Prabhu C. Acharya, Hassan Bagher-Ebadian, Stephen L. Brown, James R. Ewing, Mohammad M. Ghassemi, Benjamin Movsas, Farzan Siddiqui, Kundan S Thind

Affiliation: Michigan State University, Oakland University, Henry Ford Health

Abstract Preview: Purpose: Accurate T1 quantification using T One by Multiple Read Out Pulse (TOMROP) sequences is essential for physiological assessments in dynamic-contrast-enhanced (DCE) MRI and T1 mapping studies. ...

Graph Neural Network with Long Short-Term Memory for CT-Based Macrotrabecular-Massive Hepatocellular Carcinoma Diagnosis

Authors: Enhui Chang, Yunfei Dong, Yifei Hao, Chengliang Jin, Shengsheng Lai, Yi Long, Mengni Wu, Yulu Wu, Ruimeng Yang, Zhenyu Yang, Yue Yuan, Lei Zhang, Wanli Zhang, Yaogong Zhang

Affiliation: Duke Kunshan University, Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Macrotrabecular-Massive Hepatocellular Carcinoma (MTM-HCC) is one type of liver cancer showed minimum image signature for accurate non-invasive diagnosis. This study aims to develop and evalu...

Image Quality-Based Clinical CT Cohort Selection from Midrc Using a Multi-Institutional Phantom Dataset

Authors: John M. Boone, Andrew M. Hernandez, Paul E. Kinahan, Michael F. McNitt-Gray, Jeffrey H. Siewerdsen, Ali Uneri

Affiliation: University of California, Johns Hopkins Univ, UT MD Anderson Cancer Center, David Geffen School of Medicine at UCLA, University of Washington, UC Davis Health

Abstract Preview: Purpose: Measuring image quality (IQ) in large clinical databases, such as the Medical Imaging and Data Resource Center (MIDRC), is challenging due to the inherent complexity of image content and the ...

Improving the Robustness of AI-Based Detection and Segmentation for Brain Metastasis By Optimizing Loss Function and Multi-Dataset Training

Authors: Omar Awad, Alfredo Enrique Echeverria, Issam M. El Naqa, Daniel Allan Hamstra, Yiding Han, Ryan Lafratta, Abdallah Sherif Radwan Mohamed, Piyush Pathak, Zaid Ali Siddiqui, Baozhou Sun, Vincent Ugarte

Affiliation: H. Lee Moffitt Cancer Center, Harris Health, Baylor College of Medicine

Abstract Preview: Purpose:
Accurate detection and segmentation of brain metastases are critical for diagnosis, treatment planning, and follow-up imaging but are challenging due to labor-intensive manual assessments ...

Material Decomposition with Propagation-Based X-Ray Phase Contrast: A Comparison of Multi-Energy and Multi-Distance Imaging

Authors: Giavanna Luisa Jadick, Patrick J La Riviere

Affiliation: University of Chicago

Abstract Preview: Purpose: We assess two multi-measurement acquisition schemes for material decomposition with x-ray phase-contrast imaging (XPCI); demonstrating for the first time that multi-distance imaging can match...

Mitigating Discrepancies in Radiology Reports: A Robust LLM Approach for Generating Consistent Impressions

Authors: Junwen Liu, Mengzhen Wang, Ning Wen, Jifeng Xiao, Fuhua Yan, Yanzhao Yang, Xuekun Zhang, Zheyu Zhang

Affiliation: Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Department of Radiology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai Jiaotong University, The SJTU-Ruijin-UIH Institute for Medical Imaging Technology, Shanghai Jiaotong University Schoo of Medicine

Abstract Preview: Purpose:This study aims to develop and evaluate a large language model (LLM) fine-tuned to generate consistent and accurate impressions from imaging findings. Additionally, the study investigates the ...

Modified Dehazenet for Scatter Correction in Triggered Imaging: Enhancing Visibility and Alignment Precision for Radiation Therapy

Authors: Hyosung Cho, Dae Yup Han, Duhee Jeon, Jiwon Park, Hyesun Yang

Affiliation: Department of Therapeutic Radiology, Yale University School of Medicine, Yonsei University

Abstract Preview: Purpose: Scatter in X-ray imaging degrades image quality, hindering the visibility of critical anatomical features and complicating patient alignment in radiation therapy. This study aims to improve s...

NA-Unetr: A Neighborhood Attention Transformer Network for Enhanced 3D Segmentation of the Left Anterior Descending Artery

Authors: Hassan Bagher-Ebadian, Ahmed I Ghanem, Joshua P. Kim, Chengyin Li, Rafi Ibn Sultan, Kundan S Thind, Dongxiao Zhu

Affiliation: Wayne State University, Department of Radiation Oncology, Henry Ford Health-Cancer, Detroit, MI and Alexandria Department of Clinical Oncology, Faculty of Medicine, Alexandria University, Henry Ford Health

Abstract Preview: Purpose: Accurate segmentation of the Left Anterior Descending (LAD) artery in free-breathing 3D treatment planning CT is crucial for radiotherapy but remains challenging due to its small size, comple...

Noise Sensitivity of Benchmark Whole-Body CT Segmentation Models: Totalsegmentator and Vista3D Performance on an Independent Dataset

Authors: Samuel L. Brady, Shruti Hegde, Alexander Knapp, Usman Mahmood, Joseph G. Meier, Elanchezhian Somasundaram, Zachary Taylor

Affiliation: Cincinnati Children's Hospital Medical Ctr, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Cincinnati Children's Hospital Medical Center, Cincinnati Childrens Hospital Med Ctr

Abstract Preview: Purpose:
To assess how two benchmark multi-organ CT segmentation models respond to varying image noise levels.
Methods:
This study utilized the pediatric CT dataset from The Cancer Imaging Ar...

Nomogram Based on Interpretable Multiregional Radiomics of Cone-Beam Breast CT and Clinicopathologic Features for Predicting FISH Status in HER2 2+ Breast Cancer to Differentiate HER2-Low from -Positive: A Multi-Center Study

Authors: Keyi Bian, Marco Caballo, Wenxiu Guo, Haijie Li, Jiao Li, Aidi Liu, Yue Ma, Ioannis Sechopoulos, Yafei Wang, Yaopan Wu, Zhaoxiang Ye, Yuwei Zhang, Yueqiang Zhu, Daan van den Oever

Affiliation: Radboud University Medical Center, Tianjin Medical University Cancer Institute & Hospital, Sun Yat-Sen University Cancer Center

Abstract Preview: Purpose: To develop and validate a nomogram integrating intra- and peritumoral radiomics of contrast-enhanced cone-beam breast CT (CE-CBBCT) and clinicopathologic features for predicting fluorescence ...

Patient-Specific Imaging Modality Agnostic Virtual Digital Twins Modeling Temporally Varying Digestive Motion

Authors: James M. Balter, Lando S. Bosma, Jorge Tapias Gomez, Nishant Nadkarni, Mert R Sanbuncu, William Paul Segars, Ergys D. Subashi, Neelam Tyagi, Harini Veeraraghavan

Affiliation: University of Michigan, The University of Texas MD Anderson Cancer Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Carl E. Ravin Advanced Imaging Laboratories and Center for Virtual Imaging Trials, Duke University Medical Center, Cornell University, University Medical Center Utrecht, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Develop patient-specific virtual digital twin (VDT) cohorts modeling physically realistic spatio-temporal gastrointestinal (GI) organs (stomach and duodenum) digestive motion.
Methods: Pat...

Quantification of Iodine and Calcium Materials through HU Spectral Curve Analysis in Dual-Energy CT for Radiotherapy Planning

Authors: Sean L. Berry, Weixing Cai, Laura I. Cervino, Maria F. Chan, Yabo Fu, Puneeth Iyengar, Hsiang-Chi Kuo, Nancy Lee, Tianfang Li, Xiang Li, Jean M. Moran

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Iodine maps derived from Dual-Energy CT (DECT) provide critical biological information for radiotherapy treatment planning, but clinical iodine maps often mistakenly include bones due to insu...

Tackling the Challenge of Multi-Target Metastases Treatment: Evaluation of Ethos Treatment Planning System

Authors: Avery Antes, Bulent Aydogan, Rama Chicfeh, Erik Pearson, Neslihan Sarigul

Affiliation: The University Of Chicago, The University of Chicago

Abstract Preview: Purpose: This study evaluates the performance of the Ethos Treatment Planning System (TPS) in managing oligometastatic cancer patients previously treated using multiple isocenter plans.
Methods: Th...

Task Specific Image Quality Assessment Using Spectral Photon-Counting CT.

Authors: Azza Mohamed Ahmed, Nadine Francis, Osama Khan, Nabil Maalej, Aamir Raja, Briya Tariq

Affiliation: Khalifa University

Abstract Preview: Purpose: The study aims to evaluate the task-specific diagnostic performance of spectral photon-counting CT (SPCCT) using application-specific phantoms.
Methods:
Parameters such as linearity res...

Text-Conditioned Latent Diffusion Model for Synthesis of Contrast-Enhanced CT from Non-Contrast CT

Authors: Yizheng Chen, Michael Gensheimer, Mingjie Li, Lei Xing

Affiliation: Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose: Automatically translating non-contrast to contrast-enhanced computed tomography (CT) images is critical for improving clinical workflow, reducing heathcare cost, minimizing radiation exposure...

Toward Harmonized AI-Based Quantitative CT: A Voxel-Printed, Patient Specific Phantom for Cross-Platform Harmonization

Authors: Aditya P. Apte, Joseph O. Deasy, Yusuf Emre Erdi, Anqi Fu, Johannes Hertrich, Andrew Jackson, Usman Mahmood, Jason Ocana, Trahan Sean, Amita Shukla-Dave

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Automated AI-based quantitative CT tools hold immense promise for advancing clinical decision-making, yet their reproducibility and generalizability remain vulnerable to variability in imagin...

Towards Real-Time Marker-Less Prostate Tracking on Standard Radiation Therapy Systems

Authors: Freeman Jin, Paul J. Keall, Alistair MacDonald, Adam Mylonas, Chandrima Sengupta

Affiliation: Image X Institute, Faculty of Medicine and Health, University of Sydney, Image X Institute, Faculty of Medicine and Health, The University of Sydney, Image X Institute, School of Health Sciences, University of Sydney

Abstract Preview: Purpose: During radiation therapy, tumours in the prostate may move from the planned treatment position, leading to significant dose deviations above clinical tolerances Surveys have indicated the nee...