Search Submissions 🔎

Results for "noise index": 51 found

23na Magnetic Resonance Imaging k-Space Denoising

Authors: Lorenzo Arsini, Andrea Ciardiello, Fabio Massimo D'Amore, Stefano Giagu, Federico Giove, Carlo Mancini-Terracciano, Cecilia Voena

Affiliation: Istituto Superiore di Sanità, Sapienza University of Rome, Università Sapienza Roma, Magnetic Resonance for Brain Investigation Laboratory, Museo Storico della Fisica e Centro di Studi e Ricerche Enrico Fermi

Abstract Preview: Purpose: To leverage newly developed heteronuclear magnetic resonance imaging (MRI) techniques, particularly sodium (23Na) imaging, for identifying potential biomarkers of Alzheimer's disease—such as ...

4D CBCT Reconstruction Using Denoising Diffusion Implicit Models

Authors: Weixing Cai, Laura I. Cervino, Yabo Fu, Bohong Huang, Licheng Kuo, Tianfang Li, Xiang Li, Jean M. Moran, Huiqiao Xie, Hao Zhang

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Four-dimensional cone-beam computed tomography (4D-CBCT) is critical in image-guided radiotherapy (IGRT) for visualizing tumor motion. However, sparse projection sampling often introduces sev...

A Foundational Model for Medical Imaging Modality Translation in Head and Neck Radiotherapy

Authors: Jie Deng, Yunxiang Li, Xiao Liang, Weiguo Lu, Jiacheng Xie, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, University of Texas Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, The University of Texas at Dallas

Abstract Preview: Purpose: Recently, foundational models trained on large datasets have shown remarkable performance across various tasks. Developing a foundational model for medical image modality translation in head-...

A No-Reference Medical Image Quality Assessment Method Based on Automated Distortion Recognition Technology: Application to Preprocessing in MRI-Guided Radiotherapy

Authors: Jiayun Chen, Shengqi Chen, Yuan Tang, Zilin Wang, Guohua Wu, Jianan Wu

Affiliation: Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College

Abstract Preview: Purpose:
To develop a novel no-reference image quality assessment (NRIQA) method for evaluating the effectiveness of image preprocessing in MRI-guided radiotherapy (MRIgRT), thereby enhancing clini...

A Novel 2D Scintillation Dosimeter Using Long Scintillating Fibers.

Authors: Louis Archambault, Luc Beaulieu, Alexis Horik, Sajjad Ahmad Khan

Affiliation: Département de Physique, de Génie Physique et D'optique, et Centre de Recherche sur le Cancer, Université Laval, Département de physique, de génie physique et d'optique, Université Laval

Abstract Preview: Purpose: This study presents a novel 2D scintillation dosimeter leveraging long scintillating fibers for quality assurance (QA) in radiotherapy. The primary goal is to optimize critical parameters suc...

A Novel Non-Measured and DVH-Based IMRT QA Framework with Machine Learning for Instant Classification of Susceptible Lung SBRT VMAT Plans

Authors: Chuan He, Anh H. Le, Iris Z. Wang

Affiliation: Roswell Park Comprehensive Cancer Center, Cedars-Sinai

Abstract Preview: Purpose: To develop a non-measured and DVH-based (NMDB) IMRT QA framework integrating machine learning (ML) to classify lung SBRT VMAT plans prone to delivery errors
Methods: 560 Eclipse AcurosXB l...

A Single-View-Based Electroacoustic Tomography Imaging Using Deep Learning for Electroporation Monitoring

Authors: Yankun Lang, Lei Ren, Leshan Sun, Liangzhong Xiang, Yifei Xu, Jie Zhang

Affiliation: University of Maryland School of Medicine, University of California, Irvine

Abstract Preview: Purpose: To achieve the full-view image from a single-view sinogram using a two-stage deep learning model for electroacoustic-tomography (EAT), which is an emerging imaging technique with significant ...

A Study of Large Model Alignment Techniques for MRI Images of Small Sample Meningioma

Authors: Xiangli Cui, Man Hu, Wanli Huo, Da Yao, Jianguang Zhang, Yingying Zhang, Shanyang Zhao

Affiliation: Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, the Zhejiang-New Zealand Joint Vision-Based Intelligent Metrology Laboratory, College of Information Engineering, China Jiliang University, Departments of Radiation Oncology, Zibo Wanjie Cancer Hospital, Department of Oncology, Xiangya Hospital, Central South University, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences

Abstract Preview: Purpose:
To study the fine-tuning strategy of pre-trained AI image generation model to adapt to the generation of small sample meningioma MRI images, explore its impact on observer performance, and...

A Vision-Language Model for T1-Contrast Enhanced MRI Generation for Glioma Patients

Authors: Zachary Buchwald, Zach Eidex, Richard L.J. Qiu, Justin R. Roper, Mojtaba Safari, Hui-Kuo Shu, Xiaofeng Yang, David Yu

Affiliation: Emory University and Winship Cancer Institute, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Gadolinium-based contrast agents (GBCA) are commonly used for patients with gliomas to delineate and characterize the brain tumors using T1-weighted (T1W) MRI. However, there is a rising conc...

Accelerated Proton Density Imaging Via T2-Guided Cyclegan Super-Resolution without Paired Low-Resolution and High-Resolution Data

Authors: Yunxiang Li, Xinlong Zhang, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Acquiring high-resolution (HR) proton density (PD) images is time-consuming, while lower-resolution (LR) PD scans are faster but can lack sufficient details. We propose CycleHR, a T2-contrast...

Addressing Missing MRI Sequences: A DL-Based Region-Focused Multi-Sequence Framework for Synthetic Image Generation

Authors: Amir Abdollahi, Oliver Jäkel, Maxmillian Knoll, Rakshana Murugan, Adithya Raman, Patrick Salome

Affiliation: UKHD & DKFZ, Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), German Cancer Research Centre(DKFZ), DKFZ, MGH

Abstract Preview: Purpose:
Missing MRI sequences, due to technical issues in data handling or clinical constraints like contrast agent intolerance, limit the use of medical imaging datasets in computational analysis...

Adversarial Diffusion-Based Self-Supervised Learning for High-Resolution MR Imaging

Authors: Zachary Buchwald, Chih-Wei Chang, Zach Eidex, Richard L.J. Qiu, Mojtaba Safari, Shansong Wang, Xiaofeng Yang, David Yu

Affiliation: Emory University and Winship Cancer Institute, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: MRI offers excellent soft tissue contrast for diagnosis and treatment but suffers from long acquisition times, causing patient discomfort and motion artifacts. To accelerate MRI, supervised d...

An Automated Approach to Monitoring Clinical Protocols Against a Master Protocol

Authors: Jeremy Christophel, Zhihua Qi

Affiliation: Henry Ford Health

Abstract Preview: Purpose: To demonstrate a method to compare DICOM metadata from clinical scanners with institutional protocols as validation that clinical use matches the master protocol.
Methods: DICOM metadata i...

Automatic 4D Lung PET-CT Segmentation Using Hybrid Deep Neural Network

Authors: Hongyi Jiang, Fang-Fang Yin

Affiliation: Duke University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose:
Imaging moving tissues using PET-CT can be difficult. Separating signal into phases during construction reduces signal count and increases influence of noise. Algorithms that use signal fr...

Comparison of Computed Tomography Scanner Protocols Using an in-House Automated Method across Machines at a Single Institution

Authors: Matthew R. Hoerner, Maryam Naseri, Mena Shenouda

Affiliation: Yale University School of Medicine, Yale University

Abstract Preview: Purpose: To evaluate acquisition parameters of computed tomography (CT) scanner protocols across different machines to provide patients and clinicians consistent care and image quality, respectively.<...

Contrastive Learning and Hybrid CNN-Transformer Model for Unpaired MR Image Synthesis in Acute Cerebral Infarction

Authors: Kota Hirose, Daisuke Kawahara, Jokichi Kawazoe, Yuji Murakami

Affiliation: Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima University

Abstract Preview: Purpose: Synthesizing medical images can address the lack of or unscanned medical images, reducing scanner time and costs. However, paired image scarcity remains a challenge for image synthesis. We pr...

Correlation between Imaging Dose and Image Quality for Hypersight CBCT

Authors: Stephen Bhagroo, Sorour Hosseini, YuHuei Jessica Huang, Jeremy Kunz, Thomas Boyd Martin, Geoffrey S. Nelson, Nicholas Pierre Nelson, Ryan G. Price, Hui Zhao

Affiliation: University of Utah, Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah

Abstract Preview: Purpose: To investigate the correlation between HyperSight CBCT imaging dose and image quality.
Methods: Six-series of 174 CBCT scans were acquired using HyperSight on Halcyon (125kV, 133-971mAs, F...

Cross-Slice Attention for Unsupervised 3D Pelvic CBCT to CT Translation

Authors: Xu Chen, Jun Lian, Yunkui Pang, Pew-Thian Yap

Affiliation: University of North Carolina at Chapel Hill, Huaqiao University

Abstract Preview: Purpose: Unsupervised CBCT-to-CT translation in the pelvic region is essential for accurate radiotherapy delivery and adaptive image-guided interventions. However, current models for cross-modality tr...

Dedicated Cone-Beam Breast CT: Investigation on the Effect of Lesion Type on Detectability Index Using Cascaded Systems Analysis.

Authors: Jing-Tzyh Alan Chiang, Andrew Karellas, Thomas C Larsen, Hsin Wu Tseng, Srinivasan Vedantham

Affiliation: Department of Biomedical Engineering, The University of Arizona, Department of Medical Imaging, The University of Arizona

Abstract Preview: Purpose: To investigate the performance of dedicated breast computed tomography (BCT) for the the tasks of detection of soft tissue lesions and microcalcifications using cascaded systems analysis. The...

Deep Learning-Based Fast CBCT Imaging with Orthogonal X-Ray Projections for Gynecological Cancer Radiotherapy

Authors: Beth Bradshaw Ghavidel, Chih-Wei Chang, Yuan Gao, Priyanka Kapoor, Shaoyan Pan, Junbo Peng, Richard L.J. Qiu, Jill Remick, Justin R. Roper, Zhen Tian, Xiaofeng Yang

Affiliation: Whinship Cancer Institute, Emory University, Emory University, University of Chicago, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Current cone-beam computed tomography (CBCT) typically requires no less than 200 degrees of angular projections, which prolongs scanning time and increases radiation exposure. To address thes...

Determining the Effect of Motion during Gamma Knife Stereotactic Radiosurgery on Anterior and Posterior Lesions Using an Anthropomorphic Phantom

Authors: Guang-Pei Chen, Nitish Chopra, Juan A. Garcia-Alvarez, Mi Huang, Slade J. Klawikowski, Haidy G. Nasief, George A. Noid, Abdul Parchur, Eric S. Paulson, Christina M. Sarosiek, Christopher Schultz

Affiliation: Department of Radiation Oncology, Medical College of Wisconsin

Abstract Preview: Purpose: During routine delivery of mask-based Gamma Knife (GK) SRS, motion is tracked via the position of a reflective sticker placed on the patient’s nose relative to two stationary reflectors on th...

Development of a High-Speed Digital Breast Tomosynthesis System with a Two-Dimensional Multiple X-Ray-Source Array

Authors: John M. Boone, Andrew M. Hernandez, Paul Schwoebel, Jeffrey H. Siewerdsen, Alejandro Sisniega, Wojciech B. Zbijewski

Affiliation: Johns Hopkins University, University of California, UT MD Anderson Cancer Center, University of New Mexico Albuquerque, UC Davis Health

Abstract Preview: Purpose: To significantly improve image quality relative to clinically deployed digital breast tomosynthesis (DBT) systems, which use a 1D acquisition geometry (an arc), with a 2D image acquisition ge...

Development of an Orthogonal X-Ray Projections-Guided Cascading Volumetric Reconstruction and Tumor-Tracking Model for Adaptive Radiotherapy

Authors: Penghao Gao, Zejun Jiang, Huazhong Shu, Linlin Wang, Gongsen Zhang, Jian Zhu

Affiliation: Laboratory of Image Science and Technology, Key Laboratory of Computer Network and Information Integration, Southeast University, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Artificial Intelligence Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences

Abstract Preview: Purpose: We propose a cascading framework for time-varying anatomical volumetric reconstruction and tumor-tracking, guided by onboard orthogonal-view X-ray projections.
Methods: We employe multiple...

Does the Method Matter? How in Hominum, In Vivo, in silico, and in Phantasma Measures Compare and Contrast Is Assessing the Utility of Photon Counting CT?

Authors: Ehsan Abadi, Njood Alsaihati, Steven T. Bache, Mridul Bhattarai, Cindy Marie McCabe, Francesco Ria, Ehsan Samei

Affiliation: Duke University, Center for Virtual Imaging Trials, Duke University, Duke University Health System, Clinical Imaging Physics Group, Department of Radiology, Duke University Health System

Abstract Preview: Purpose: To compare and contrast alternative methods including reader (in hominum), phantom (in phantasma), in vivo, and in silico methods deployed to assess the performance of photon counting (PCCT) ...

Enhance Four-Dimension Cone-Beam Computed Tomography (4D-CBCT) from Sparse Views Using a Novel Deep Learning Model

Authors: Lei Ren, Jie Zhang

Affiliation: University of Maryland School of Medicine

Abstract Preview: Purpose: 4D-CBCT is valuable for imaging anatomy affected by respiratory motions to guide radiotherapy delivery. However, 4D-CBCT often has undersampled projections acquired in each respiratory phase ...

Enhancing Synthetic Pelvic CT Images from CBCT Using Vision Transformer with Adaptive Fourier Neural Operators

Authors: Rashmi Bhaskara, Oluwaseyi Oderinde

Affiliation: Purdue University

Abstract Preview: Purpose: This study proposes a novel approach to overcoming CBCT image quality limitations by developing an improved synthetic CT (sCT) generation method based on a CycleGAN architecture using Vision ...

Enhancing T2-Weighted Brain MRI Resolution across Orientations Using AI-Based Volumetric Reconstruction

Authors: Mengqi Shen, Meghna Trivedi, Tony J.C. Wang, Andy (Yuanguang) Xu, Yading Yuan

Affiliation: Columbia University Medical Center, Dept of Med Hematology & Oncology, Data Science Institute at Columbia University, Columbia University Irving Medical Center, Department of Radiation Oncology, Columbia University Irving Medical Center

Abstract Preview: Purpose: T2-weighted (T2w) images are critical for identifying pathological changes due to their superior contrast in differentiating tissue types. However, they often lack detailed anatomical resolut...

Enhancing the CT Contrast Via Attention-Gated Contrast Enhancement Gan (AGCE-GAN)

Authors: Nan Li, Yaoying Liu, Shouping Xu, Xinlei Xu, Gaolong Zhang

Affiliation: School of Physics, Beihang University, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, School of physics, Beihang University, Beihang University, Department of Radiation Oncology

Abstract Preview: Purpose:
CT simulation is essential for radiation therapy preparation but has limitations in distinguishing lesions. Contrast-enhanced CT (CECT) improves lesion detection and characterization, but ...

Four-Dimensional on-Beam Computed Tomography Reconstruction from Projection Image Differences Representing Motion Change

Authors: Kwang-Ho Cheong, Seungryong Cho, Joonil Hwang, Jae Won Jung, Hoyeon Lee, Raymond Hyunwoo Moon, Inhwan Yeo, Jihyung Yoon

Affiliation: East Carolina University, INOVA Schar Cancer Institute, University of Hong Kong, Hanllym University, KAIST, University of Rochester

Abstract Preview: Purpose: Monitoring a target and neighboring organs during beam delivery is crucial for successful radiotherapy (RT). Conventional transit imaging methods lack volumetric reconstruction capabilities, ...

Generalizable 7T T1 Map Synthesis from 1.5T and 3T T1W MRI for High-Resolution MRI-Guided Radiation Therapy

Authors: Zachary Buchwald, Chih-Wei Chang, Zach Eidex, Hui Mao, Richard L.J. Qiu, Justin R. Roper, Mojtaba Safari, Hui-Kuo Shu, Xiaofeng Yang, David Yu

Affiliation: Emory University and Winship Cancer Institute, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University, Emory University School of Medicine

Abstract Preview: Purpose: MRI-guided radiation therapy (MRgRT) benefits significantly from enhanced soft-tissue contrast and spatial resolution, which aid in accurately delineating tumors and organs at risk. Although ...

Generating 3D Brain in Volume (BRAVO) Images Using Attention-Gated Conditional Gan (AGC-GAN)

Authors: Nan Li, Shouping Xu, Gaolong Zhang, Xuerong Zhang

Affiliation: Department of Radiation Oncology, HeBei YiZhou proton center, School of Physics, Beihang University, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College

Abstract Preview: Purpose:
The 3D BRAVO sequence is an advanced magnetic resonance (MR) technique that allows for image reconstruction at any angle. It offers 1 mm gapless scanning and has a high signal-to-noise rat...

Geometrically Derived Density Compensation Function for 3D Non-Cartesian MRI Reconstruction

Authors: Oluyemi Bright Aboyewa, KyungPyo Hong, Daniel Kim

Affiliation: Department of Radiology, Northwestern University

Abstract Preview: Purpose: While non-Cartesian MRI is desirable for fast imaging with high spatial resolution and robustness to motion, it requires long post-processing times. Preconditioning with an adequate density c...

High-Fidelity Synthetic CT Generation from CBCT for Dibh Breast Cancer Patients Using Shortest Path Regularization

Authors: Manju Liu, Weiwei Sang, Yanyan Shi, Zhenyu Yang, Fang-Fang Yin, Chulong Zhang, Lihua Zhang, Rihui Zhang

Affiliation: Jiahui International Hospital, Jiahui International Hospital, Radiation Oncology, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: This study aims to transform cone-beam computed tomography (CBCT) images acquired from deep inspiration breath-hold (DIBH) breast cancer patients into high-fidelity synthetic CT (sCT) images....

Hyperpolarized 13c Image Superresolution with Deep Learning

Authors: Kofi M. Deh, Tamas Jozsa, Tsang-Wei Tu

Affiliation: Cranfield University, Howard University Hospital, Howard University

Abstract Preview: Purpose: To enhance the quality of hyperpolarized (HP) 13C magnetic resonance images by integrating deep learning with perfusion modeling.
Methods: A convolutional neural network (CNN) and a superr...

Impact of Patient Size on the Choices of Dual and Single Energy CT for Accurate Liver Fat Volume Fraction Quantification

Authors: Xinhua Li, Jie Zhang, Yifang (Jimmy) Zhou

Affiliation: University of Kentucky, Cedars-Sinai Medical Center

Abstract Preview: Purpose: Fat volume fraction (FVF) is an important biomarker for non-alcoholic fatty liver disease. CT can be a good modality for FVF assessment if the accuracy is adequate. We aimed to study the impa...

Impact on image quality from reduced dose conebeam CT for pediatric fluoroscopy-guided interventional (FGI) imaging

Authors: Samuel L. Brady, Kevin Chen, Joseph G. Meier

Affiliation: University of Cincinnati, Cincinnati Childrens Hospital Med Ctr

Abstract Preview: Purpose: Conebeam-CT (CBCT) acquisition protocols typically do not distinguish between adults and pediatrics. In collaboration with a fluoroscopically-guided interventional (FGI) manufacturer, new, do...

Improving Adversarial Approaches to Synthetic CT Image Generation with Skin Surface Masks

Authors: Mahya Ahmadzadeh, Nagarajan Kandasamy, Keyur Shah, Gregory C. Sharp, Santhosh Vadivel, John MacLaren Walsh

Affiliation: Electrical and Computer Engineering Department, Massachusetts General Hospital, Emory University, Drexel University

Abstract Preview: Purpose: In image-guided radiotherapy (IGRT), cone beam CTs (CBCTs) suffer from distortions that degrade registration with planning CTs. While CycleGANs can generate synthetic CTs (sCTs) from CBCTs, e...

In silico Evaluation Vs Standard Phantom Evaluation of a Deep Learning Reconstruction Algorithm

Authors: Naruomi Akino, Kirsten Lee Boedeker, Ilmar Hein, Dylan Mather, Akira Nishikori, Daniel W Shin

Affiliation: Canon Medical Systems Corporation, Canon Medical Research USA

Abstract Preview: Purpose: To validate the performance a deep learning reconstruction (DLR) algorithm in an anatomical background compared to a uniform phantom background.
Methods: An analytic forward projection mod...

In-Vivo Image Quality of Head/Neck and CNS with an Advanced C-Arm Linac CBCT Solution

Authors: Theodore Higgins Arsenault, Kenneth W. Gregg, Lauren E Henke, Rojano Kashani, Christian Erik Petersen, Alex T. Price, Atefeh Rezaei, Runyon C. Woods

Affiliation: University Hospitals Seidman Cancer Center

Abstract Preview: Purpose: CBCT is subject to more artifacts due to increased photon scatter, especially in areas of increased tissue heterogeneities compared to fan-beam CTs (FBCTs). Improved imaging panels combined w...

Knowledge-Based Deep Residual U-Net for Synthetic CT Generation Using a Single MR Volume for Frameless Radiosurgery

Authors: Justus Adamson, John Ginn, Yongbok Kim, Ke Lu, Trey Mullikin, Xiwen Shu, Chunhao Wang, Zhenyu Yang, Jingtong Zhao

Affiliation: Duke University, Duke Kunshan University

Abstract Preview: Purpose:
To develop a knowledge-based deep model for synthetic CT (sCT) generation from a single MR volume in frameless radiosurgery (SRS), eliminating the need for CT simulation prior to the SRS d...

Material Decomposition with Propagation-Based X-Ray Phase Contrast: A Comparison of Multi-Energy and Multi-Distance Imaging

Authors: Giavanna Luisa Jadick, Patrick J La Riviere

Affiliation: University of Chicago

Abstract Preview: Purpose: We assess two multi-measurement acquisition schemes for material decomposition with x-ray phase-contrast imaging (XPCI); demonstrating for the first time that multi-distance imaging can match...

Optimization-Based Image Reconstruction Regularized with Inter-Spectral Structural Similarity for Limited-Angle Dual-Energy Cone-Beam CT

Authors: Chih-Wei Chang, Junbo Peng, Richard L.J. Qiu, Justin Roper, Xiangyang Tang, Tonghe Wang, Huiqiao Xie, Xiaofeng Yang, David Yu

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Emory Univ, Emory University, Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Limited-angle dual-energy (DE) cone-beam CT (CBCT) is considered a promising solution to achieve fast and low-dose DE imaging on current CBCT scanners without hardware modification. However, ...

Optimizing Fractionation Schedules for De-Escalation Radiotherapy in Head and Neck Cancers Using Deep Reinforcement Learning

Authors: Zhongjie Lu

Affiliation: Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine

Abstract Preview: Purpose: Patients with locally-advanced head and neck squamous cell carcinomas(HNSCCs), particularly those related to human papillomavirus(HPV), often achieve good locoregional control(LRC), yet they ...

Rapid CBCT Imaging with Ultra-Sparse X-Ray Projections for Head & Neck Cancer Radiotherapy

Authors: Hania A. Al-Hallaq, Chih-Wei Chang, Anees H. Dhabaan, Yuan Gao, Shaoyan Pan, Junbo Peng, Richard L.J. Qiu, Keyur Shah, Sibo Tian, Zhen Tian, Xiaofeng Yang, David Yu, Jun Zhou

Affiliation: Emory University, Whinship Cancer Institute, Emory University, University of Chicago, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Traditional cone-beam computed tomography (CBCT) often requires multiple angular projections, increasing radiation exposure and extending scanning times, which may lead to heightened patient ...

Real Time Monte Carlo Dose Calculation for Clinical Cyberknife Radiation Therapy Based on Deep Learning Diffusion Model

Authors: Ruiyan Du, He Huang, Mingzhu Li, Ying Li, Hongyu Lin, Wei Liu, Shihuan Qin, Yiming Ren, Hui Xu, Lian Zhang, Xiao Zhang, Zunhao Zhang

Affiliation: Department of Radiation Oncology, Mayo Clinic, Medical AI Lab, The First Hospital of Hebei Medical University, Hebei Provincial Engineering Research Center for AI-Based Cancer Treatment Decision-Making, The First Hospital of Hebei Medical University, Department of Oncology, The First Hospital of Hebei Medical University

Abstract Preview: Purpose: Monte Carlo (MC) dose calculation is the gold standard in clinical CyberKnife radiation therapy (RT), considering its steep dose gradients and high-freedom non-coplanar beam angles, but extre...

Simulating Realistic Digital Phantoms for Virtual Clinical Trials in Radiology and Radiation Oncology Using a Deep-Learning Based Conditional Denoising Diffusion Probabilistic Model (c-DDPM)

Authors: Matthew Brown, Yushi Chang, Jinhyuk Choi, William Silva Mendes, Lei Ren, Aman Sangal, William Paul Segars, Phuoc Tran, Hualiang Zhong

Affiliation: University of Maryland School of Medicine, Department of Radiation Oncology, University of Maryland School of Medicine, Carl E. Ravin Advanced Imaging Laboratories and Center for Virtual Imaging Trials, Duke University Medical Center, Department of Radiation Oncology, Medical College of Wisconsin

Abstract Preview: Purpose: Digital phantoms like XCAT are essential for imaging and treatment optimization in radiology and radiation oncology. However, the lack of realistic textures (HU distribution) in XCAT limits i...

Structure-Based Diffusion Model for CT Synthesis from MR Images for Radiotherapy Treatment Planning

Authors: Samuel Kadoury, Redha Touati

Affiliation: Polytechnique Montréal

Abstract Preview: Purpose:
Generating synthetic CT images from MR acquisitions for radiotherapy planning allows to integrate soft tissue contrast alongside density information stemming from CT, thus improving tumor ...

Text-Conditioned Latent Diffusion Model for Synthesis of Contrast-Enhanced CT from Non-Contrast CT

Authors: Yizheng Chen, Michael Gensheimer, Mingjie Li, Lei Xing

Affiliation: Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose: Automatically translating non-contrast to contrast-enhanced computed tomography (CT) images is critical for improving clinical workflow, reducing heathcare cost, minimizing radiation exposure...

Transformer-Based Proton Dose Prediction with and without Diffusion Process

Authors: Jing Qian, Brandon Reber, David M. Routman, Satomi Shiraishi

Affiliation: Mayo Clinic

Abstract Preview: Purpose: The dose distribution in proton radiotherapy (PRT) is characterized by sharp gradients, posing a challenge for machine learning-based dose prediction. While denoising with diffusion processes...

Ukan Architecture for Voxel-Level Dose Prediction in Radiotherapy

Authors: Lu Jiang, Ke Sheng

Affiliation: Department of Radiation Oncology, University of California at San Francisco, Department of Radiation Oncology, University of California, San Francisco

Abstract Preview: Purpose:
Conventional radiotherapy treatment planning is guided by a set of generic objectives that are unspecific to patient anatomy. Treatment planning thus heavily relies on the planner’s experi...

Using Multiple Sequences MRI for Synthesizing CT Based on a Deep Learning Approach

Authors: Jie Hu, Nan Li, Chuanbin Xie, Shouping Xu, Xinlei Xu, Gaolong Zhang, Zhilei Zhang

Affiliation: School of Physics, Beihang University, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Radiation Oncology, the First Medical Center of the People's Liberation Army General Hospital, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, Peopleʼs Republic of China, Department of Radiation Oncology, School of Physics, Beihang University, Beijing, 102206, Peopleʼs Republic of China

Abstract Preview: Purpose: This study aims to synthesize CT images for MRI-only radiation therapy using a deep learning approach that integrates information from the T1- and T2-weighted MRI sequence.
Methods: 97 hea...