Search Submissions 🔎

Results for "oncologist automatic": 4 found

Automatic Tumor Segmentation and Catheter Detection from MRI for Cervical Cancer Brachytherapy Using Uncertainty-Aware Dual Convolution-Transformer Unet

Authors: Majd Antaki, Rohini Bhatia, Gayoung Kim, Yosef Landman, Junghoon Lee, Akila N. Viswanathan

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Physics and Advanced Development Elekta

Abstract Preview: Purpose: Brachytherapy is a standard radiation therapy approach for cervical cancer, which directly delivers radiation source to the tumor using catheters. Treatment planning requires identification o...

Clinical Feasibility of a Deep-Learning-Based Auto Contouring through Qualitative and Dosimetric Assessments

Authors: Sara Endo, Takeshi Fujisawa, Hidehiro Hojo, Masaki Nakamura, Hidenobu Tachibana

Affiliation: Department of Radiation Oncology, National Cancer Center Hospital East, Radiation Safety and Quality Assurance Division, National Cancer Center Hospital East

Abstract Preview: Purpose: To assess the clinical feasibility of deep learning (DL)-based automated contouring through qualitative and quantitative assessments.

Methods: Sixty cases were chosen, including 3 OARs...

Integrating Neuroanatomic Knowledge in Clinical Target Volumes for Glioma Patients Using Deep Learning

Authors: Ali Ajdari, Thomas R. Bortfeld, Christopher Bridge, Gregory Buti, Marcela Giovenco, Fredrik Lofman, Gregory C. Sharp, Helen A Shih, Tugba Yilmaz

Affiliation: Massachusetts General Hospital, RaySearch Laboratories, Department Of Radiation Oncology, Massachusetts General Hospital (MGH), Massachusetts General Hospital & Harvard Medical School, Massachusetts General Hospital and Harvard Medical School

Abstract Preview: Purpose: Defining radiation target volumes with accurate integration of the neuroanatomy is one of the major difficulties in designing glioma treatments. We developed a deep learning network for norma...

Ratoguide: Evaluation of AI-Driven Fully Automated Treatment Planning Support System for Lung SBRT

Authors: Keiichi Jingu, Noriyuki Kadoya, Takafumi Komiyama, Takeru Nakajima, Hikaru Nemoto, Hiroshi Onishi, Masahide Saito, Ryota Tozuka

Affiliation: Department of Radiology, University of Yamanashi, Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Department of Advanced Biomedical Imaging, University of Yamanashi

Abstract Preview: Purpose: We evaluated the accuracy of a new AI-based fully automated planning software in stereotactic body radiotherapy (SBRT) for early-stage lung cancer.
Methods: We collected data from 125 pati...