Search Submissions 🔎

Results for "organ segmentation": 52 found

A Beagle Dog Mesh-Type Phantom for Application to Nuclear Medicine and Internal Dosimetry

Authors: Wesley E. Bolch, Natalia Estefania Carrasco-Rojas, Chansoo Choi, Robert Joseph Dawson, Aitor Gallastegui Menoyo, Rowan James Milner, Bangho Shin, Maria M. Von Chamier

Affiliation: University of Florida

Abstract Preview: Purpose: To develop a tetrahedralizable mesh-type phantom of a male beagle dog to later perform Monte Carlo radiation transport simulations and calculate organ doses using monoenergetic photons, elect...

A Dual Energy CT-Guided Intelligent Radiation Therapy Platform

Authors: Jiayi Chen, Manju Liu, Ning Wen, Haoran Zhang, Yibin Zhang

Affiliation: Department of Radiation Oncology, Ruijin Hospital, Department of Radiology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Duke Kunshan University, Department of Radiation Oncology,Ruijin Hospital, Shanghai Jiao Tong University School of Medicine

Abstract Preview: Purpose: This study introduces a novel Dual Energy CT (DECT)-Guided Intelligent Radiation Therapy (DEIT) platform designed to streamline and optimize the radiotherapy process. The DEIT system combines...

A Novel Method for Virtual Extension of Image-Derived Vasculature Segmentations

Authors: Raneem Atta, Alejandro Bertolet, Mislav Bobić, Wesley E. Bolch, Robert Joseph Dawson, Carlos Huesa-Berral, Harald Paganetti, Eric Wehrenberg-Klee

Affiliation: Massachusetts General Hospital, University of Florida, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Massachusetts General Hospital and Harvard Medical School

Abstract Preview: Purpose: Representations of intra-organ vasculature have a variety of uses in the field of computational dosimetry but generally rely on models derived from population-averaged reference individuals. ...

A Practical Experimental Software Validation Method for Voxel-Based Personalised Dosimetry in Radiopharmaceutical Therapy

Authors: Thomas Gee, Sofia Michopoulou, Amit Nautiyal

Affiliation: University Hospital Southampton

Abstract Preview: Purpose: Dosimetry software that is accessible to departments offers new opportunities to improve patient-specific dosimetry. Prior to clinical decision-making, it is essential to validate dosimetry s...

AI Auto-Contouring for CT-Based High-Dose-Rate Interstitial Brachytherapy of Cervical Cancer: Implications for Organ-at-Risk (OAR) Contouring and Dosimetric Analysis

Authors: Indrin J. Chetty, Jing Cui, Mitchell Kamrava, Tiffany M. Phillips, Jennifer M. Steers, Brad Stiehl

Affiliation: Department of Radiation Oncology,Cedars-Sinai Medical Center, Cedars-Sinai Medical Center

Abstract Preview: Purpose: Auto-contouring for HDR interstitial brachytherapy can be confounded by large deformation in anatomy and image quality. Here we evaluated the performance of an AI-based auto-contouring softwa...

Abdomen CT Multi-Organ Segmentation Using Multi-Granularity Feature Extraction

Authors: Zilei Fu, Yi Guo, Wanli Huo, Hongdong Liu, Laishui Lyu, Zhao Peng, Yaping Qi, Senting Wang

Affiliation: Department of Radiotherapy, cancer center, The First Affiliated Hospital of Fujian Medical University, the Zhejiang-New Zealand Joint Vision-Based Intelligent Metrology Laboratory, College of Information Engineering, China Jiliang University, Division of lonizing Radiation Metrology, National Institute of Metrology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, China Jiliang University, Department of Oncology, Xiangya Hospital, Central South University

Abstract Preview: Purpose: Medical image boundaries are commonly characterized by smooth gray-level transitions, resulting in pixel-level segmentation errors near these blurred boundaries. To address this, we developed...

Advancing Thoracic Synthetic CT Images with Enhanced Cyclegan for Adaptive Radiotherapy Applications

Authors: Silambarasan Anbumani, Nicolette O'Connell, Eenas A. Omari, Amanda Pan, Eric S. Paulson, Lindsay Puckett, Monica E. Shukla, Dan Thill, Jiaofeng Xu

Affiliation: Elekta Inc, Elekta Limited, Linac House, Department of Radiation Oncology, Medical College of Wisconsin

Abstract Preview: Purpose: Accurate electron density information from on-board imaging is essential for direct dose calculations in adaptive radiotherapy (ART). This study evaluates a deep learning model for thoracic s...

An Automated Tool for the Categorization of a Clinical Database By Anatomic Region for Big Data Applications

Authors: Yasin Abdulkadir, Justin Hink, James M. Lamb, Jack Neylon

Affiliation: Department of Radiation Oncology, University of California, Los Angeles

Abstract Preview: Purpose: Curation remains a significant barrier to the use of ‘big data’ radiotherapy planning databases of 100,000 patients or more. Anatomic site of treatment is an important stratification for almo...

Analysis of Inter-Organ Noise Variability for Clinical CT Images across 3133 Image Series

Authors: Lavsen Dahal, Francesco Ria, Ehsan Samei, Justin B. Solomon, Liesbeth Vancoillie, Yakun Zhang

Affiliation: Duke University, Carilion Clinic, Clinical Imaging Physics Group, Department of Radiology, Duke University Health System

Abstract Preview: Purpose: Clinical diagnostic task-based optimization of CT procedures require precise and organ-specific assessments. This study investigates inter-organ noise variability to highlight the limitations...

Artificial Intelligence (AI)-Driven Automatic Contour Quality Assurance (QA) with Uncertainty Quantification

Authors: Steve B. Jiang, Dan Nguyen, Chenyang Shen, Fan-Chi F. Su, Jiacheng Xie, Shunyu Yan, Daniel Yang, Ying Zhang, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, The University of Texas at Dallas

Abstract Preview: Purpose: Accurate delineation of treatment targets and organs-at-risk is crucial for radiotherapy. Despite significant progress in artificial intelligence (AI)-based automatic segmentation tools, effi...

Auto-Segmentation Scripting to Generate Optimization Structures for Spine SBRT Planning

Authors: Jon Hansen

Affiliation: Washington University in St Louis

Abstract Preview: Purpose: Commercially available auto-segmentation software was utilized to generate institution-specific optimization structures for spine stereotactic body radiation therapy (SBRT). Implementation of...

Automated Full-Body Tumor Segmentation from PET/CT Images

Authors: Austin Castelo, Xinru Chen, Caroline Chung, Laurence Edward Court, Jaganathan A Parameshwaran, Zhan Xu, Jinzhong Yang, Yao Zhao

Affiliation: The University of Texas MD Anderson Cancer Center, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center

Abstract Preview: Purpose:
To develop a deep learning-based segmentation model to automatically delineate tumors from full-body PET/CT images.
Methods:
PET/CT image pairs of 91 patients were collected for this...

Automated IMPT Treatment Planning for CSI: Enhancing Efficiency with Auto-Segmentation and Scripting

Authors: Katja M. Langen, William Andrew LePain, Robert Muiruri, Vivi Nguyen, Mosa Pasha, Roelf L. Slopsema, Alexander Stanforth, Yinan Wang, Mingyao Zhu

Affiliation: Emory Healthcare, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Intensity modulated proton therapy (IMPT) treatment planning for craniospinal irradiation (CSI) is complex and requires extensive effort from the planner. This study aims to enhance planning ...

Automated Multimodal Image Registration for Prostate Bed Radiation Treatment

Authors: Quan Chen, Xue Feng, Chunhui Han, Gaofeng Huang, Trevor Ketcherside, Yi Lao, Yun Rose Li, An Liu, Bo Liu, Kun Qing, William T. Watkins

Affiliation: Graduate Program in Bioengineering, University of California San Francisco-UC Berkeley, Department of Radiation Oncology, City of Hope National Medical Center, Mayo Clinic Arizona, Carina Medical LLC

Abstract Preview: Purpose: New treatment platforms such as Ethos (Varian Medical Systems) allow the introduction of multi-modal imaging into adaptive radiotherapy workflow to facilitate an up-to-date view of patients’ ...

BEST IN PHYSICS THERAPY: Population-Based Automated Organs-at-Risk Contouring Outlier Detection and Visualization without Requiring Patient-Specific Reference Contour

Authors: Rex A. Cardan, Carlos E. Cardenas, Quan Chen, Jingwei Duan, Joseph Harms, Joel A. Pogue, Richard A. Popple, Yi Rong, Dennis N. Stanley, Natalie N. Viscariello, Libing Zhu

Affiliation: Washington University in St. Louis, The University of Alabama at Birmingham, Mayo Clinic Arizona, University of Alabama at Birmingham

Abstract Preview: Purpose: Manual verification of organs-at-risk(OARs) delineations is a critical yet time-intensive process, often susceptible to unintentional oversights. To assist the reviewing process, a population...

Box-Prompt Zero-Shot Smart Segmentation in Radiation Oncology Using a SAM-Based Model: Smartsam

Authors: Kristen A. Duke, Samer Jabor, Neil A. Kirby, Parker New, Niko Papanikolaou, Arkajyoti Roy, Yuqing Xia

Affiliation: St. Mary's University, The University of Texas San Antonio, UT Health San Antonio

Abstract Preview: Purpose:
The Segment Anything Model (SAM) is a foundational box-prompt-based model for natural image segmentation. However, its applicability to zero-shot 3D medical image segmentation, particularl...

Clinical Implementation of Automated Contour Quality Assurance in Head and Neck Radiotherapy

Authors: Sam Armstrong, Jamison Louis Brooks, Nicole Johnson, Douglas John Moseley, Cassie Sonnicksen, Erik J. Tryggestad

Affiliation: Mayo Clinic

Abstract Preview: Purpose: To evaluate the feasibility of a shallow learning-based quality assurance (QA) tool designed to assist human reviewers in assessing organ-at-risk (OAR) contours for head and neck radiotherapy...

Clinical Validation of a Deep-Learning Segmentation Tool for Head and Neck Cancer Patients and Thoracic and Abdominal Cancer Patients

Authors: Haijian Chen, Katja M. Langen, William Andrew LePain, Claire Tran, Mingyao Zhu

Affiliation: Emory Healthcare, Emory University, Georgia Institute of Technology

Abstract Preview: Purpose: To validate the performance of a commercial deep-learning segmentation (DLS) tool for head and neck cancer (HNC) and thoracic and abdominal cancer (TAC) by comparing it to manual segmentation...

Cloud Workflow AI Apps for Radiotherapy Image Analysis Using Pycerr and Seven Bridges-Cancer Genomics Cloud

Authors: Aditya P. Apte, Joseph O. Deasy, Sharif F. Elguindi, Aditi Iyer, Jue Jiang, Eve Marie LoCastro, Jung Hun Oh, Amita Shukla-Dave, Harini Veeraraghavan

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: We present publicly shareable applications (apps) for AI-based radiotherapy segmentation workflows with pyCERR on Seven Bridges Cancer Genomics Cloud-based platform (CGC-SB)
Methods: Runni...

Comparison of AI-Based and Ants for Longitudinal Deformable Image Registration in Head and Neck Cancer

Authors: Aditya P. Apte, Joseph O. Deasy, Jue Jiang, Nancy Lee, Sudharsan Madhavan, Nishant Nadkarni, Lopamudra Nayak, Harini Veeraraghavan, Wei Zhao

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: To track early response to radiotherapy using digital twins, it is crucial to quantify tumor volume and mass changes. Traditional tumor detection methods, particularly in image registration, ...

Deep Learning-Based Auto-Segmentation in Cervical High-Dose-Rate Brachytherapy with Clinical Considerations

Authors: Benjamin Haibe-Kains, Ruiyan Ni, Alexandra Rink

Affiliation: Department of Medical Biophysics, University of Toronto, University Health Network

Abstract Preview: Purpose: Accurate auto-segmentation for targets and organs-at-risk (OARs) using deep learning reduces the delineating time in radiotherapy. In high-dose-rate brachytherapy, specific clinical criteria ...

Deep Learning-Based Segmentation for Precision Radiation Therapy in Breast Cancertreatment

Authors: Hamdah Alanazi, Silvia Pella

Affiliation: FAU, Florida Atlantic University

Abstract Preview: Purpose: The appearance of breast cancer in the global list of most common cancers worldwide requires
research for ultimate treatment approaches including radiation therapy to reduce deaths from br...

Dosimetric Evaluation of Clinical Venezia Hybrid Applicator Plans Using a TG-186 Model-Based Dose Calculation Algorithm

Authors: Davide Brivio, Ivan M. Buzurovic, Thomas C. Harris, Desmond A. O'Farrell

Affiliation: Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Brigham and Women's Hospital, Harvard Medial School, Dana-Farber Cancer Institute, Department of Radiation Oncology

Abstract Preview: Purpose: Cervical cancer can be treated with a brachytherapy boost following external beam radiotherapy. One applicator option is the Advanced Gynecological Applicator "Venezia" (Elekta) hybrid, consi...

Enhanced Pelvic Organ Segmentation Using LLM-Driven Prompts for Prostate Cancer Low-Dose-Rate Brachytherapy

Authors: Yang Lei, Tian Liu, Ren-Dih Sheu, Meysam Tavakoli, Jing Wang, Kaida Yang, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai, Department of Radiation Oncology, Emory University

Abstract Preview: Purpose:
The study aimed to improve target and organ at risk (OAR) segmentation in low-dose-rate brachytherapy (LDR-BT) for prostate cancer treatment, by integrating clinical guidelines into deep l...

Enhancing Adaptive Radiotherapy Segmentation with a 3D Unet Framework and Prior Fraction Information

Authors: Jennifer L. Dolan, Chengyin Li, Parag Parikh, Doris N. Rusu, Kundan S Thind

Affiliation: Henry Ford Health, Cedars-Sinai Medical Center

Abstract Preview: Purpose: The time and resource demands of online Adaptive Radiation Therapy (ART) can limit its widespread clinical adoption and potentially impact patient throughput. To address this, we developed a ...

Evaluate a Deep-Learning Auto-Segmentation Software for Liver SIRT

Authors: Wookjin Choi, Jun Li

Affiliation: Thomas Jefferson University

Abstract Preview: Purpose: Resin Yttrium-90 (Y-90) selective internal radiation therapy (SIRT) is a radioembolization procedure which uses Y-90 microspheres to treat metastatic liver cancer. In the procedure, liver vol...

Evaluating Commercial Auto-Segmentation Software: Is Performance on Pediatric Organs-at-Risk Accurate?

Authors: Gregory T. Armstrong, James E. Bates, Lei Dong, Ralph Ermoian, Jie Fu, Christine Hill-Kayser, Rebecca M. Howell, Sharareh Koufigar, John T. Lucas, Thomas E. Merchant, Tucker J. Netherton, Sogand Sadeghi

Affiliation: Department of Radiation Oncology, University of Washington and Fred Hutchinson Cancer Center, Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, St. Jude Children's Research Hospital, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Department of Radiation Oncology, St. Jude Children’s Research Hospital, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, University of Washington/ Fred Hutchinson Cancer Center, Department of Radiation Oncology, University of Pennsylvania, University of Pennsylvania, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: This study evaluates the adaptability and limitations of commercially available (MIM, RayStation) tools trained on predominately adult datasets (ages 20–60+ years) for delineating organs at r...

Evaluating Deep Learning Models for Accurate Segmentation of GTV and Oars in MR-Guided Adaptive Radiotherapy for Pancreatic Cancer

Authors: Christopher G. Ainsley, Pradeep Bhetwal, Yingxuan Chen, Wookjin Choi, Vimal K. Desai, Karen E. Mooney, Adam Mueller, Hamidreza Nourzadeh, Yevgeniy Vinogradskiy, Maria Werner-Wasik

Affiliation: Thomas Jefferson University

Abstract Preview: Purpose: MR-guided adaptive radiotherapy (MRgART) has demonstrated improved outcomes for patients with pancreatic cancer. However, the time-consuming re-segmentation of targets and organs-at-risk (OAR...

Evaluating Necessity of Patient-Specific Deep Learning-Based Auto-Segmentation for Improved Adaptation for Abdominal Tumors

Authors: Asma Amjad, Renae Conlin, Eric S. Paulson, Christina M. Sarosiek

Affiliation: Department of Radiation Oncology, Medical College of Wisconsin

Abstract Preview: Purpose: In an effort to improve contouring accuracy for abdominal MR guided online adaptive radiotherapy (MRgOART), patient-specific deep learning-based auto-segmentation (PS-DLAS) has been proposed....

From Concept to Clinic: A Phase-Based Approach for Implementing Auto-Segmentation in Radiation Therapy

Authors: Elizabeth L. Covington, Robert T. Dess, Charles S. Mayo, Michelle L. Mierzwa, Dan Polan, Jennifer Shah, Claire Zhang

Affiliation: University of Michigan, Department of Radiation Oncology, University of Michigan

Abstract Preview: Purpose: Auto-segmentation improves contour consistency and standardization in radiation therapy but may introduce variations from current practices, potentially impacting treatment outcomes and toxic...

Fully Automated Zero-Shot Organ Segmentation in Male Pelvic MR Images for MR-Guided Radiation Therapy

Authors: Jihun Kim, Jin Sung Kim, Jun Won Kim, Yong Tae Kim, Chanwoong Lee, Jihyn Pyo, Young Hun Yoon

Affiliation: Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine

Abstract Preview: Purpose: Although segmentation foundation models have recently demonstrated promising zero-shot performance on natural images, its clinical application to magnetic resonance (MR) images still requires...

Image Similarity Measurement Based on Handcrafted and Deep Learning Radiomics

Authors: John Ginn, Chenlu Qin, Deshan Yang

Affiliation: Duke University, Department of Radiation Oncology, Duke University

Abstract Preview: Purpose: Clinical implementation of auto-segmentation tools has been hindered by poor interpretability and generalizability of AI models, necessitating the development of automated contour quality ass...

Impact of Physics Modeling on Monte Carlo Normal Tissue Dose Reconstructions for Passive Scattering Proton Therapy Patients

Authors: Caroline Esposito, Keith T Griffin, Jae Won Jung, Choonik Lee, Choonsik Lee, Matthew Mille, Harald Paganetti, Sergio Morato Rafet, Jan PO Schuemann, Jungwook Shin, Torunn I Yock

Affiliation: East Carolina University, University of Michigan, Massachusetts General Hospital, National Cancer Institute, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Massachusetts General Hospital and Harvard Medical School

Abstract Preview: Purpose: The National Cancer Institute’s Pediatric Proton and Photon Therapy Comparison Cohort aims to collect and analyze data from cancer centers across the United States and Canada to quantify diff...

Insights into Deep Learning Auto-Segmentation for Abdominal Organs in MR-Guided Adaptive Radiation Therapy: A Single-Institution CT-MR Comparison

Authors: Asma Amjad, Renae Conlin, Eric S. Paulson, Christina M. Sarosiek

Affiliation: Department of Radiation Oncology, Medical College of Wisconsin

Abstract Preview: Purpose:
MR-guided adaptive radiation therapy (MRgART) is transforming clinical workflows, requiring fast, accurate organs-at-risk (OARs) contouring. While deep learning auto-segmentation (DLAS) of...

Integrating Clinical Knowledge Via Llms for Precise Organ-at-Risk Segmentation in Pancreatic Cancer SBRT

Authors: Karyn A Goodman, Yang Lei, Tian Liu, Pretesh Patel, Jing Wang, Kaida Yang, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: This study aims to improve organ-at-risk (OAR) segmentation in pancreatic cancer stereotactic body radiotherapy (SBRT) by integrating clinical guidelines into deep learning workflows. We use ...

Mask-Based Synthetic Contrast-Enhanced CT Generation for Advancing Data Limited Segmentation on Cardiac Substructure

Authors: Jin Sung Kim, Chanwoong Lee, Young Hun Yoon

Affiliation: Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine

Abstract Preview: Purpose: Chest contrast-enhanced CT (CECT) serves as a valuable tool for cardiac imaging, but its lack of detailed anatomical visualization limits its utility in segmentation tasks. While CECT offers ...

Multi-Organ Segmentation of Pelvic Cone-Beam Computed Tomography (CBCT) with Transformer Models to Enhance Adaptive Radiotherapy for Prostate Cancer

Authors: Ming Chao, Thomas Chum, Tenzin Kunkyab, Yang Lei, Tian Liu, Richard G Stock, Hasan Wazir, Junyi Xia, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai

Abstract Preview: Purpose:
This study aims to develop effective strategies for multi-organ segmentation of pelvic cone-beam computed tomography (CBCT) images based on transformer models to facilitate adaptive radiat...

Noise Sensitivity of Benchmark Whole-Body CT Segmentation Models: Totalsegmentator and Vista3D Performance on an Independent Dataset

Authors: Samuel L. Brady, Shruti Hegde, Alexander Knapp, Usman Mahmood, Joseph G. Meier, Elanchezhian Somasundaram, Zachary Taylor

Affiliation: Cincinnati Children's Hospital Medical Ctr, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Cincinnati Children's Hospital Medical Center, Cincinnati Childrens Hospital Med Ctr

Abstract Preview: Purpose:
To assess how two benchmark multi-organ CT segmentation models respond to varying image noise levels.
Methods:
This study utilized the pediatric CT dataset from The Cancer Imaging Ar...

Optimization of the U-Net Model for the Radiation Dose Prediction in Lung Cancer RT Plans and Its Uncertainty Quantification

Authors: Ibtisam Almajnooni, Victor Cobilean, Milos Manic, Harindra Sandun Mavikumbure, Elisabeth Weiss, Lulin Yuan

Affiliation: Virginia Commonwealth University

Abstract Preview: Purpose: This study aims to optimize the 3D U-Net architecture for dose prediction in lung cancer radiation therapy (RT) plans, particularly in scenarios with limited clinical data, as well as to quan...

Parameterized 4D Deformable Registration (p4Dreg) in Abdominal 4DCT Scans

Authors: Edward Robert Criscuolo, Deshan Yang

Affiliation: Duke University, Department of Radiation Oncology, Duke University

Abstract Preview: Purpose:
Deformable registration of 4DCT images has many clinical applications, but current methods are unreliable and can produce dangerous errors. Iterative, parametrized image registration does ...

Patient-Specific Imaging Modality Agnostic Virtual Digital Twins Modeling Temporally Varying Digestive Motion

Authors: James M. Balter, Lando S. Bosma, Jorge Tapias Gomez, Nishant Nadkarni, Mert R Sanbuncu, William Paul Segars, Ergys D. Subashi, Neelam Tyagi, Harini Veeraraghavan

Affiliation: University of Michigan, The University of Texas MD Anderson Cancer Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Carl E. Ravin Advanced Imaging Laboratories and Center for Virtual Imaging Trials, Duke University Medical Center, Cornell University, University Medical Center Utrecht, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Develop patient-specific virtual digital twin (VDT) cohorts modeling physically realistic spatio-temporal gastrointestinal (GI) organs (stomach and duodenum) digestive motion.
Methods: Pat...

Performance Comparison of Artificial Intelligence-Based Auto-Segmentation Software on Pediatric CT Image Datasets for the Creation of Patient Specific Computational Phantoms

Authors: Wesley E. Bolch, Emily L. Marshall, Dhanashree Rajderkar, Wyatt Smither

Affiliation: University of Florida

Abstract Preview: Purpose: To determine the accuracy of TotalSegmentator, an AI-based automatic segmentation toolkit, on pediatric CT scans as the original software was trained on adult image datasets with a mean patie...

Personalized Dosimetric Workflow for 177Lu-PSMA Treatments Considering the Cross-Irradiation from Bone Metastases to Red Bone Marrow

Authors: NadÚge Anizan, David Broggio, Désirée Deandreis, Didier Franck, Camilo Garcia, Stéphanie Lamart, Sébastien Leygnac, Alexandre Pignard

Affiliation: Gustave Roussy, Service de Physique Médicale, Institut Bergonié, Service de Physique Médicale, Gustave Roussy, Service de Médecine Nucléaire, Autorité de Sûreté Nucléaire et de Radioprotection (ASNR), PSE-SANTE/SDOS/LEDI, Autorité de Sûreté Nucléaire et de Radioprotection (ASNR), PSE-SANTE/SDOS

Abstract Preview: Purpose: This work aimed at developing an innovative workflow for 177Lu-PSMA personalized dosimetry to lesions and organs at risk (OAR) simultaneously, considering the cross-irradiation from bone meta...

Personalized Organ Dose Estimation Using Monte Carlo Simulations, Auto-Segmentation, and Anatomical Extension from Clinical CT Scans

Authors: Belen Juste, Choonsik Lee, Matthew Mille, Rafael MirĂł, Sergio Morato Rafet, Agustin Santos, Gumersindo VerdĂș

Affiliation: Division of Cancer Epidemiology and Genetics, National Cancer Institute, Universitat PolitĂšcnica de ValĂšncia, Servicio de RadiofĂ­sica y ProtecciĂłn RadiolĂłgica, Consorcio Hospitalario Provincial de CastellĂłn, National Cancer Institute

Abstract Preview: Purpose: To evaluate the differences in CT scan radiation dose estimation between personalized dose reconstruction, based on real patient CT images, and generalized phantom-based dose calculations.

Prospective Organ-Level Dose Estimation in CT Imaging Using Scout-Net: A Comparison with Established Methods

Authors: Maria Jose Medrano, Grant Stevens, Liyan Sun, Justin Ruey Tse, Adam S. Wang, Sen Wang

Affiliation: Department of Radiology, Stanford University, GE HealthCare, Stanford University

Abstract Preview: Purpose: Patient exposure to ionizing radiation is a major concern in CT imaging. Size-specific dose estimation methods can prospectively estimate organ-level radiation doses based on patient sizes an...

Quality Monitoring of Temporal Performance Degradation in Clinical Use of AI Auto-Segmentation

Authors: Ali Ammar, Quan Chen, Jingwei Duan, Yi Rong, Nathan Y. Yu, Libing Zhu

Affiliation: Mayo Clinic Arizona, University of Alabama at Birmingham

Abstract Preview: Purpose: Clinical performance of deep learning-based auto-segmentation (DLAS) can degrade over time due to AI “aging” from unseen data input compared to the initial model training data. This study aim...

Redefining the Down-Sampling Scheme of U-Net for Precision Biomedical Image Segmentation

Authors: Yizheng Chen, Md Tauhidul Islam, Mingjie Li, Lei Xing

Affiliation: Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose:
Biomedical image segmentation (BIS) is a cornerstone of medical physics, enabling accurate delineation of anatomical structures and abnormalities, which is critical for diagnosis, treatmen...

Research on Multi-Organ Segmentation Based on Cross-Domain Transfer Learning

Authors: Jiali Gong, Yi Guo, Chi Han, Wanli Huo, Hongdong Liu, Zhao Peng, Yaping Qi, Zhaojuan Zhang

Affiliation: Department of Radiotherapy, cancer center, The First Affiliated Hospital of Fujian Medical University, Department of Oncology, Xiangya Hospital, Central South University, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, China Jiliang University, Division of lonizing Radiation Metrology, National Institute of Metrology, Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, the Zhejiang-New Zealand Joint Vision-Based Intelligent Metrology Laboratory, College of Information Engineering, China Jiliang University

Abstract Preview: Purpose: To address overfitting from limited training data in multi-organ segmentation, an efficient transfer learning framework is proposed. It reduces reliance on training samples, enabling a single...

Structure-Based Diffusion Model for CT Synthesis from MR Images for Radiotherapy Treatment Planning

Authors: Samuel Kadoury, Redha Touati

Affiliation: Polytechnique Montréal

Abstract Preview: Purpose:
Generating synthetic CT images from MR acquisitions for radiotherapy planning allows to integrate soft tissue contrast alongside density information stemming from CT, thus improving tumor ...

Uncertainty-Guided Cross-Domain Adaptation for Unsupervised Medical Image Segmentation

Authors: Yunxiang Li, Weiguo Lu, Xiaoxue Qian, Hua-Chieh Shao, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Curating high-quality, labeled data for medical image segmentation can be challenging and costly, considering the existence of various image domains with differing modalities/protocols. Cr...

Utilizing All Acquired Images from Fluoroscopically-Guided Interventions: Test Application with Event-By-Event Patient Dosimetry Calculations

Authors: Sagine Berry-Tony, Lasya Daggumati, James R Duncan, Melak Senay, Allan Thomas

Affiliation: University of Missouri-Kansas City School of Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, Washington University in St. Louis

Abstract Preview: Purpose: Most acquired images in FGIs are not permanently archived. In the context of modern computational prowess, novel improvements to FGI practice likely sit just under the surface of large-scale ...

Validation of an Open Source Automatic Segmentation Tool for Personalized Dosimetry

Authors: Klaus Bacher, Louise D'hondt, Jeff Rutten, Gwenny Verfaillie

Affiliation: Ghent University

Abstract Preview: Purpose: Manual organ segmentation is a very time-consuming but necessary process in personalized dosimetry. Automatic segmentation tools may alleviate this task. In this study the impact of automatic...