Authors: Steve Braunstein, Yannet Interian, Hui Lin, Bo Liu, Janine Lupo, Olivier Morin, Benedict Neo
Affiliation: Radiation Oncology, University of California San Francisco, Graduate Program in Bioengineering, University of California San Francisco-UC Berkeley, Department of Radiation Oncology, University of California San Francisco, Department of Data Science, University of San Francisco, University of San Francisco
Abstract Preview: Purpose: Large Language Models (LLMs) demonstrate strong general text comprehension but remain limited in oncology due to insufficient contextual alignment. We pilot embedding alignment through radiol...
Authors: Jenghwa Chang, Kuan Huang, Lyu Huang, Jason Lima, Jian Liu, Farzin Motamedi
Affiliation: Northwell, Department of Computer Science and Technology, Kean University, Physics and Astronomy, Hofstra University, Hofstra University Medical Physics Program
Abstract Preview: Title: A Deep Learning Approach to the Prediction of Gamma Passing Rates in VMAT Radiotherapy Plans for Adaptive Treatment.
Purpose: This study aims to develop a deep learning algorithm to predict ...
Authors: Weiguo Lu, Hua-Chieh Shao, Guoping Xu, You Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center
Abstract Preview: Purpose:
Neural network-based lesion segmentation remains a significant challenge due to the low contrast between lesions and surrounding tissues (high ambiguity) and the variability of lesion shap...
Authors: Weiguo Lu, Jax Luo, Xiaoxue Qian, Hua-Chieh Shao, Guoping Xu, You Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, Harvard Medical School
Abstract Preview: Purpose:
Semi-supervised segmentation leverages sparse annotation information to learn rich representations from combined labeled and label-less data for segmentation tasks. This study leverages th...
Authors: Xiangli Cui, Man Hu, Wanli Huo, Da Yao, Jianguang Zhang, Yingying Zhang, Shanyang Zhao
Affiliation: Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, the Zhejiang-New Zealand Joint Vision-Based Intelligent Metrology Laboratory, College of Information Engineering, China Jiliang University, Departments of Radiation Oncology, Zibo Wanjie Cancer Hospital, Department of Oncology, Xiangya Hospital, Central South University, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences
Abstract Preview: Purpose:
To study the fine-tuning strategy of pre-trained AI image generation model to adapt to the generation of small sample meningioma MRI images, explore its impact on observer performance, and...
Authors: Penghao Gao, Zejun Jiang
Affiliation: Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Artificial Intelligence Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
Abstract Preview: Purpose: Real-time tumor tracking can effectively compensate for the impact of respiratory motion on dose distribution. We propose a patient-specific external-internal correlation model driven by opti...
Authors: Matthew J Ferris, Jason K Molitoris
Affiliation: Department of Radiation Oncology, University of Maryland School of Medicine, University of Maryland
Abstract Preview: Purpose: Anatomy changes often happen in head-and-neck (HN) patients treated with proton radiation therapy. These changes can result in deteriorations of target dose coverage and increased dose to org...
Authors: Yankun Lang, Lei Ren, Dario B. Rodrigues
Affiliation: University of Maryland School of Medicine, Department of Radiation Oncology, University of Maryland School of Medicine
Abstract Preview: Purpose:
HTP of microwave (MW) phased-array systems determine MW antenna settings to maximize energy absorption (SAR in W/kg) in tumor. Conventional HTP algorithms calculate SAR based on electromag...
Authors: Hajar Moradmand, Lei Ren
Affiliation: University of Maryland School of Medicine, University of Maryland
Abstract Preview: Purpose:
The Sharp-van der Heijde (SvH) score is essential for assessing joint damage in rheumatoid arthritis (RA) from radiographic images. However, manual scoring is time-intensive and prone to v...
Authors: Theodore Higgins Arsenault, Beatriz Guevara, Rojano Kashani, Raymond F. Muzic, Gisele Castro Pereira, Alex T. Price
Affiliation: University Hospitals Seidman Cancer Center, Case Western Reserve University Department of Biomedical Engineering
Abstract Preview: Purpose: Accurate dose prediction in radiotherapy is essential for treatment planning. This study evaluates four nnUnet-based models using the OpenKBP head and neck dataset: a baseline model (Model 1)...
Authors: Hector Andrade-Loarca, Ines Butz, Chiara Gianoli, Prof. Gitta Kutyniok, Jianfei Li, Katia Parodi, Prof. Vincenzo Patera, Angelo Schiavi, Prof. Ozan Öktem
Affiliation: Sapienza University of Rome, Department of Mathematics, Royal Institute of Technology, School of Computation, Information and Technology, Technische Universitaet Muenchen, Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Department of Mathematics, Ludwig-Maximilians-Universität (LMU) München, Department of Medical Physics, Ludwig-Maximilians-Universität (LMU) München
Abstract Preview: Purpose: To explore and demonstrate the feasibility of accurate and fast prediction of the water equivalent thickness (WET) distribution of tissue traversed by a proton imaging pencil beam, aiming at ...
Authors: Chih-Wei Chang, Runyu Jiang, Mark Korpics, Yuan Shao, Aranee Sivananthan, Zhen Tian, Ralph Weichselbaum, Xiaofeng Yang, Aubrey Zhang, Xiaoman Zhang
Affiliation: Department of Radiation & Cellular Oncology, University of Chicago, University of Chicago, Department of Physics, University of Chicago, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University, School of Public Health, University of Illinois Chicago
Abstract Preview: Purpose: Gamma Knife (GK) plan quality can vary significantly among planners, even for cases handled by the same planner. Although plan quality metrics such as coverage, selectivity, and gradient inde...
Authors: Victoria Doss, Tsion Gebre, Rachel B. Ger, Esi A Hagan, Elaina Hales, Russell K Hales, Xun Jia, Heng Li, Dezhi Liu, Todd R. McNutt, Meti Negassa, Anas Obaideen, Tinker Trent, K. Ranh Voong, Cecilia FPM de Sousa
Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Johns Hopkins University
Abstract Preview: Purpose: As cancer care advances, more patients require re-irradiation, yet evidence-based data is lacking. This study aimed to develop a thoracic re-irradiation database and explore time-dependent re...
Authors: Wenchao Cao, Yingxuan Chen, Haisong Liu, Wenyin Shi, Wentao Wang, Lydia J. Wilson, Zhenghao Xiao
Affiliation: Thomas Jefferson University
Abstract Preview: Purpose: Multi-target stereotactic radiosurgery (SRS) planning poses challenges due to complex geometries, small target volumes, and steep dose gradients. Achieving a balance between target coverage a...
Authors: James Brugarolas, Meixu Chen, Raquibul Hannan, Payal Kapur, Jing Wang, Kai Wang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, University of Maryland Medical Center
Abstract Preview: Purpose: Accurate prognosis of clear cell renal cell carcinoma (ccRCC) is essential for guiding personalized treatment planning. In this study, we present a multi-modal ensemble model (MMEM) that inte...
Authors: Weigang Hu, Zhenhao Li, Jiazhou Wang, Xiaojie Yin, Zhen Zhang
Affiliation: Fudan University Shanghai Cancer Center
Abstract Preview: Purpose:
This study aims to develop and validate a novel deep learning method to generate synthetic PET images for rectal cancer from MRI data. By incorporating metabolic information from the synth...
Authors: Xiangli Cui, Chunyan Fu, Man Hu, Wanli Huo, Jingyu Liu, Jianguang Zhang, Yingying Zhang, Shanyang Zhao
Affiliation: Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, the Zhejiang-New Zealand Joint Vision-Based Intelligent Metrology Laboratory, College of Information Engineering, China Jiliang University, Departments of Radiation Oncology, Zibo Wanjie Cancer Hospital, Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Department of Oncology, Xiangya Hospital, Central South University, College of Information Engineering, China Jiliang University, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences
Abstract Preview: Purpose: To quantify the impact of fine-tuning strategies for pre-trained AI image generation models on glioma MRI image quality and observer performance, and to determine the optimal fine-tuning conf...
Authors: Ryan Alden, Tithi Biswas, Kaushik Halder, Felix Maria-Joseph, Michael Mix, Rihan Podder, Tarun Kanti Podder
Affiliation: SUNY Upstate Medical University, IIT-Roorkee, University of Florida
Abstract Preview: Purpose: Early-stage NSCLC patients undergoing SBRT often die due to intercurrent illnesses. However, prediction of overall survival (OS) remains crucial due to the risk of disease recurrence. This st...
Authors: Xun Jia, Youfang Lai
Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Johns Hopkins University
Abstract Preview: Purpose: Ultrahigh dose rate FLASH (>40 Gy/s) radiotherapy (RT) has attracted significant attention. The mechanism remains unclear, hindering clinical translation. This study investigated the behavior...
Authors: Amanda J. Deisher, Andrew YK Foong, Witold Matysiak, Jing Qian, Xueyan Tang, Erik J. Tryggestad, Mi Zhou
Affiliation: Mayo Clinic
Abstract Preview: Purpose: Phase gating is commonly employed to mitigate the impact of tumor motion in radiotherapy. Due to the machine-specific time delay between triggering and radiation delivery, the triggering sign...
Authors: William N. Duggar, Amirhossein Eskorouchi, Haifeng Wang
Affiliation: Mississippi State University, University of Mississippi Medical Center
Abstract Preview: Purpose:
Extracapsular extension (ECE) in lymph nodes represents a critical prognostic factor in head and neck squamous cell carcinoma (HNSCC), bearing important implications for staging, treatment...
Authors: Steve B. Jiang, Mu-Han Lin, Yu-Chen Lin, Austen Matthew Maniscalco, Dan Nguyen, David Sher, Xinran Zhong
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, UT Southwestern Medical Center, UT Dallas
Abstract Preview: Purpose:
Sequential boost radiotherapy (RT) poses a challenge in allocating dose across multiple plans while protecting organs at risk (OARs). Clinicians must decide whether OAR sparing should occu...
Authors: Ibtisam Almajnooni, Victor Cobilean, Milos Manic, Harindra Sandun Mavikumbure, Elisabeth Weiss, Lulin Yuan
Affiliation: Virginia Commonwealth University
Abstract Preview: Purpose: This study aims to optimize the 3D U-Net architecture for dose prediction in lung cancer radiation therapy (RT) plans, particularly in scenarios with limited clinical data, as well as to quan...
Authors: Eric Aliotta, Michalis Aristophanous, Joseph O. Deasy, Bill Diplas, Milan Grkovski, James Han, Vaios Hatzoglou, Jeho Jeong, Nancy Y Lee, Ramesh Paudyal, Nadeem Riaz, Heiko Schoder, Amita Shukla-Dave
Affiliation: Department of Radiology, Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center
Abstract Preview: Purpose: To forecast radiotherapy treatment response for head and neck cancer (HNC) using multimodality imaging and personalized radiobiological modeling.
Methods: Multi-modality imaging data from ...
Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose:
This work demonstrates how existing software, when creatively adapted, can address a wide range of clinical challenges. By focusing on data exploration and application-specific modificatio...
Authors: Yunxiang Li, Weiguo Lu, Xiaoxue Qian, Hua-Chieh Shao, You Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center
Abstract Preview: Purpose:
Curating high-quality, labeled data for medical image segmentation can be challenging and costly, considering the existence of various image domains with differing modalities/protocols. Cr...
Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Zi Yang, Kangning Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose: Dose prediction (DP) is essential in guiding radiotherapy planning. However, current DP models for intensity-modulated radiation therapy (IMRT) primarily rely on fixed-beam orientations and a...
Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose:
Converting MR images to synthetic CT (MR2sCT) is highly desirable as it streamlines the radiotherapy treatment planning workflow. This approach leverages the superior soft tissue visibilit...
Authors: Mark Anastasio, Zong Fan, Hua Li, Changjie Lu, Lulu Sun, Xiaowei Wang, Zhimin Wang, Michael Wu
Affiliation: University of Illinois at Urbana-Champaign, University of Illinois at Chicago, Washington University School of Medicine, University of Illinois Urbana-Champaign, Washington University in St. Louis, University Laboratory High School
Abstract Preview: Purpose: Histological whole slide images (WSIs) are vital in clinical diagnosis. Although deep learning (DL) methods have achieved great success in this task, they often lack interpretability. Traditi...