Search Submissions 🔎

Results for "precision deep": 32 found

A Deep Learning-Based Approach for Rapid Prediction of IMRT/VMAT Patient-Specific Quality Assurance for Online Adaptive Plans Generated with a 0.35T MR-Linac

Authors: Suman Gautam, Tianjun Ma, William Song

Affiliation: Virginia Commonwealth University

Abstract Preview: Purpose: We propose an artificial intelligence (AI)-based method to rapidly predict the patient-specific quality assurance (PSQA) results for magnetic resonance (MR)-guided online adaptive radiation th...

A Novel Feature Selection Method for Survival Prediction of Head-and-Neck Following Radiation Therapy

Authors: Xiaoying Pan, X. Sharon Qi

Affiliation: Department of Radiation Oncology, University of California, Los Angeles, School of Computer Science and technology,Xi'an University of Posts and Telecommunications

Abstract Preview: Purpose:
Survival prediction for cancer presents a substantial hurdle in personalized oncology, due to intricate, high-dimensional medical data. Our study introduces an innovative feature selection...

A Real-Time Framework for Fiducial Tracking and Intrafraction Motion Assessment of Cyberknife in Stereotactic Body Radiation Therapy for Liver Cancer

Authors: Ruiyan Du, Mingzhu Li, Ying Li, Wei Liu, Shihuan Qin, Yiming Ren, Biao Tu, Hui Xu, Lian Zhang, Xiao Zhang, Zengren Zhao

Affiliation: Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Medical AI Lab, The First Hospital of Hebei Medical University, Hebei Provincial Engineering Research Center for AI-Based Cancer Treatment Decision-Making, The First Hospital of Hebei Medical University, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Department of Radiation Oncology, Mayo Clinic, Department of Oncology, The First Hospital of Hebei Medical University

Abstract Preview: Purpose: Fiducial tracking is widely used in CyberKnife to dynamically guide the gantry for moving target like liver cancer stereotactic body radiation therapy (SBRT). This study developed a robust fr...

AI-Based Registration-Free 3T T2-Weighted MRI Synthesis Using Truefisp MRI Acquired on a 0.35T MR-Linac System

Authors: Hilary P Bagshaw, Mark K Buyyounouski, Cynthia Fu-Yu Chuang, Yu Gao, Dimitre Hristov, Lianli Liu, Lawrie Skinner, Lei Xing

Affiliation: Department of Radiation Oncology, Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose:
MR-guided radiation therapy has introduced a significant leap in cancer treatment by allowing adaptive treatment. The low-field MR-guided system predominantly uses the TrueFISP sequence, w...

An Image Representation of Radiomics Data for Enhanced Deep Radiomics Analysis with Consideration of Feature Interactions

Authors: Xiaolong Fu, Runping Hou, Md Tauhidul Islam, Lei Xing

Affiliation: Department of Radiation Oncology, Stanford University, Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine

Abstract Preview: Purpose: To introduce a novel schematic image representation of radiomics data, called OmicsMap, for high-performance deep radiomics analysis. OmicsMap transforms tabular radiomics data into an image ...

Assessing the Risks of Synthetic MRI Data in Deep Learning: A Study on U-Net Segmentation Accuracy

Authors: Chuangxin Chu, Haotian Huang, Tianhao Li, Jingyu Lu, Zhenyu Yang, Fang-Fang Yin, Tianyu Zeng, Chulong Zhang, Yujia Zheng

Affiliation: The Hong Kong Polytechnic University, Nanyang Technological University, Australian National University, Medical Physics Graduate Program, Duke Kunshan University, North China University of Technology, Duke Kunshan University

Abstract Preview: Purpose: Deep learning segmentation models, such as U-Net, rely on high-quality image-segmentation pairs for accurate predictions. However, the recent increasing use of generative networks for creatin...

Augmenting Histopathology Lymphocyte Detection with Gpt-4 in-Context Visual Reasoning

Authors: Kyle J. Lafata, Casey Y. Lee, Xiang Li, Megan K. Russ, Zion Sheng

Affiliation: Duke University, Department of Radiation Oncology, Duke University, Clinical Imaging Physics Group, Department of Radiology, Duke University Health System

Abstract Preview: Purpose:
Traditional deep learning-based cell segmentation models face limitations, such as the need for extensive training data and retraining when encountering new cell types or domains. This stu...

Automatic Tumor Segmentation and Catheter Detection from MRI for Cervical Cancer Brachytherapy Using Uncertainty-Aware Dual Convolution-Transformer Unet

Authors: Majd Antaki, Rohini Bhatia, Gayoung Kim, Yosef Landman, Junghoon Lee, Akila N. Viswanathan

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Physics and Advanced Development Elekta

Abstract Preview: Purpose: Brachytherapy is a standard radiation therapy approach for cervical cancer, which directly delivers radiation source to the tumor using catheters. Treatment planning requires identification o...

Comparative Analysis of Quantum-Classical Hybrid and Traditional Deep Learning Approaches for Chest X-Ray Image Classification

Authors: Ji Hye Han, Yookyung Kim, Jang-Hoon Oh, Heesoon Sheen, Han-Back Shin

Affiliation: Ewha Womans university, Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, High-Energy Physics Center, Chung-Ang Universit, Ewha Womans University, Kyung Hee University Hospital

Abstract Preview: Purpose: Chest X-rays are critical for diagnosing conditions such as pneumonia, tuberculosis, and COVID-19. Although deep learning (DL) approaches, especially convolutional neural networks, have signi...

Construction and Application Study of a Deep Learning-Based Iscout-Guided Precision Radiotherapy Positioning Error Prediction Model for Breast Cancer

Authors: Fangfen Dong, Jiaming Li, Xiaobo Li, Weipei Wang, Zhixin Wang, Bing Wu, Benhua Xu, Yong Yang, Yifa Zhao

Affiliation: Department of Radiation Oncology, Fujian Medical University Union Hospital/Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors/Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematologi, Zhangpu County Hospital, School of Medical Imaging, Fujian Medical University

Abstract Preview: Purpose: To explore the construction and clinical application value of a deep learning-based positioning error prediction model, providing a reference for optimizing iSCOUT system-guided precision rad...

Deep Dive of Clinical 5DCT Patient Results

Authors: Ryan Andosca, Peter Boyle, Minji Victoria Kim, Michael Vincent Lauria, Daniel A. Low, Claudia R. Miller, Drew Moghanaki, Louise Naumann, Dylan P. O'Connell, Ricky R Savjani

Affiliation: Department of Radiation Oncology, University of California, Los Angeles, UCLA, University of California, Los Angeles, UCLA Radiation Oncology

Abstract Preview: Purpose: To demonstrate the performance of the model-based CT scanning protocol, 5DCT, as an alternative to 4DCT.
Methods: 5DCT imaging results for 242 patients were analyzed. Implementation of the...

Deep Learning Based Automatic Cerebrovascular Segmentation in Multi-Center TOF-MRA Datasets

Authors: Gayoung Kim, Junghoon Lee

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University

Abstract Preview: Purpose: 3D time-of-flight magnetic resonance angiography (TOF-MRA) is widely used for visualizing cerebrovascular structures. Accurate segmentation of cerebrovascular structures is critical for relia...

Deep Learning-Based Auto Segmentation of Oars in Head and Neck Radiation Therapy

Authors: Laila A Gharzai, Bharat B Mittal, Poonam Yadav

Affiliation: Northwestern Feinberg School of Medicine, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Northwestern University Feinberg School of Medicine

Abstract Preview: Purpose: Multiple studies have shown the increasing role of deep learning in segmenting regions of interest. This work presents the feasibility of auto-segmenting the critical structures for head and ...

Deep Learning-Based Categorization of Brain Tumours Using Brain MRI : Advancing Precision Medicine in Neuroimaging

Authors: William F.B Igoniye, Belema Manuel, Christopher F. Njeh, O Ray-offor

Affiliation: Indiana University School of Medicine, Department of Radiation Oncology, Department of Radiology, University of Port Harcourt Teaching Hospital

Abstract Preview: Purpose: The accurate and efficient categorization of brain tumors is essential for effective treatment planning and improved patient outcomes. Current MRI-based diagnostic methods are time-intensive ...

Deep Learning-Based Segmentation for Precision Radiation Therapy in Breast Cancertreatment

Authors: Hamdah Alanazi, Silvia Pella

Affiliation: FAU, Florida Atlantic University

Abstract Preview: Purpose: The appearance of breast cancer in the global list of most common cancers worldwide requires
research for ultimate treatment approaches including radiation therapy to reduce deaths from br...

Deep Learning-Driven Comparative Analysis of CNN-Based Architectures and High-Order Vision Mamba U-Net (H-vMUNet) for MRI-Based Brain Tumor Segmentation

Authors: Sang Hee Ahn, Nalee Kim, Do Hoon Lim

Affiliation: Samsung Medical Center, Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine

Abstract Preview: Purpose: MRI offers superior soft-tissue contrast, aiding tumor localization and segmentation in radiation therapy, which traditionally relies on oncologists' expertise. This study compares CNN-based ...

Enhancing CNN-Based Brain Metastasis Detection in MRI By Integrating Locoregional 3D Deformation Technique

Authors: Minbin Chen, Ke Lu, Kaizhong Shi, Chunhao Wang, Chuan Wu, Zhenyu Yang, Fang-Fang Yin, Jingtong Zhao

Affiliation: The First People's Hospital of Kunshan, Duke University, Medical Physics Graduate Program, Duke Kunshan University, Duke Kunshan University, Department of Radiation Oncology, Duke Kunshan University

Abstract Preview: Purpose: MRI-based automatic detection of brain metastases is often challenged by the small size and subtle nature of metastases. This study aimed to develop a novel deep learning-based brain metastas...

Evaluation of Nodule Volume Accuracy with Deep Learning-Based Reconstructions on Cdznte Photon-Counting and Energy-Integrating CT

Authors: Gisell Ruiz Boiset, Paulo ROBERTO Costa, Luuk J Oostveen, Elsa Bifano Pimenta, Ioannis Sechopoulos, Alessandra Tomal

Affiliation: Radboud University Medical Center, University of São Paulo (USP), Institute of Physics, Universidade Estadual de Campinas. Instituto de Física Gleb Wataghin

Abstract Preview: Purpose: This study aimed to evaluate the precision and accuracy of volume measurements for solid nodules (SNs) and ground-glass opacities (GGOs) in lung images acquired using energy-integrating CT (E...

Improving Segmentation Precision in Prostate Cancer Adaptive Radiotherapy with the Intentional Deep Overfit Learning (IDOL) Approach

Authors: Seungryong Cho, Donghyeok Choi, Joonil Hwang, Byung-Hee Kang, Jin Sung Kim, Eungman Lee, Younghee Park

Affiliation: Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, KAIST, Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Ewha Womans University of Medicine

Abstract Preview: Purpose: Radiation therapy (RT) is critical for cancer treatment, but changes in tumor size and shape during therapy challenge precise dose delivery. Adaptive radiation therapy (ART) addresses these v...

Improving the Robustness of AI-Based Detection and Segmentation for Brain Metastasis By Optimizing Loss Function and Multi-Dataset Training

Authors: Omar Awad, Alfredo Enrique Echeverria, Issam M. El Naqa, Daniel Allan Hamstra, Yiding Han, Ryan Lafratta, Abdallah Sherif Radwan Mohamed, Piyush Pathak, Zaid Ali Siddiqui, Baozhou Sun, Vincent Ugarte

Affiliation: H. Lee Moffitt Cancer Center, Harris Health, Baylor College of Medicine

Abstract Preview: Purpose:
Accurate detection and segmentation of brain metastases are critical for diagnosis, treatment planning, and follow-up imaging but are challenging due to labor-intensive manual assessments ...

Incorporating Physicians’ Contouring Style into Auto-Segmentation of Clinical Target Volume for Post-Operative Prostate Cancer Radiotherapy Using a Language Encoder

Authors: Steve B. Jiang, Chien-Yi Liao, Dan Nguyen, Daniel Yang, Hengrui Zhao

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Post-operative radiotherapy for prostate cancer requires precise contouring of the clinical target volume (CTV) to account for microscopic disease that is invisible in the image. However, ...

Integrating Clinical Knowledge Via Llms for Precise Organ-at-Risk Segmentation in Pancreatic Cancer SBRT

Authors: Karyn A Goodman, Yang Lei, Tian Liu, Pretesh Patel, Jing Wang, Kaida Yang, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: This study aims to improve organ-at-risk (OAR) segmentation in pancreatic cancer stereotactic body radiotherapy (SBRT) by integrating clinical guidelines into deep learning workflows. We use ...

Integrating Large Kernel Attention Mechanism into Deep Learning Model for Automatic and Auccrate Segmentation of Gross Tumor Volume in Lung Cancer Patients

Authors: Xuezhen Feng, Li-Sheng Geng, Haoze Li, Xi Liu, Tianyu Xiong, Ruijie Yang

Affiliation: Department of Health Technology and Informatics, The Hong Kong Polytechnic University, School of Physics, Beihang University, School of Nuclear Science and Technology, University of South China, Department of Radiation Oncology, Peking University Third Hospital

Abstract Preview: Purpose: This study aimed to develop a deep learning-based algorithm for automatically delineate gross tumor volume (GTV) for lung cancer patients, alleviating the workload of radiologists and improvi...

Is Simplicity Even Better: Deep Learning Algorithms for Breath Motion Phase Prediction in Motion Management

Authors: Amanda J. Deisher, Andrew YK Foong, Witold Matysiak, Jing Qian, Xueyan Tang, Erik J. Tryggestad, Mi Zhou

Affiliation: Mayo Clinic

Abstract Preview: Purpose: Phase gating is commonly employed to mitigate the impact of tumor motion in radiotherapy. Due to the machine-specific time delay between triggering and radiation delivery, the triggering sign...

Knowledge-Informed Deep Learning for Accurate and Interpretable Extracapsular Extension Detection in Head and Neck Squamous Cell Carcinoma

Authors: William N. Duggar, Amirhossein Eskorouchi, Haifeng Wang

Affiliation: Mississippi State University, University of Mississippi Medical Center

Abstract Preview: Purpose:
Extracapsular extension (ECE) in lymph nodes represents a critical prognostic factor in head and neck squamous cell carcinoma (HNSCC), bearing important implications for staging, treatment...

Lymph Node Malignancy Prediction in Head and Neck Cancer Using a Graph Neural Network

Authors: Liyuan Chen, Meixu Chen, Bowen Jing, Sepeadeh Radpour, Erich Josef Schmitz, David Sher, Jing Wang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Prospective clinical trials have shown that involved nodal radiation therapy (INRT) can substantially improve patients’ quality of life without increasing the risk of elective nodal failure. ...

Pancrea-Seg-Net: A Semi-Supervised Deep Learning Framework for Pancreatic Tumor and Vessel Segmentation

Authors: Manju Liu, Ning Wen, Fuhua Yan, Yanzhao Yang, Zhenyu Yang, Haoran Zhang, Lei Zhang, Yajiao Zhang

Affiliation: Department of Radiology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy where precise segmentation of tumors and adjacent vessels is crucial for effective treatment planning. This study dev...

Patient-Specific Bio-Morphological Features in Cherenkov Imaging for Positioning Verification: A Retrospective Analysis in Accelerated Partial Breast Irradiation (aPBI) VMAT Radiotherapy

Authors: Yao Chen, Lesley A Jarvis, Allison Matous, Rongxiao Zhang

Affiliation: Dartmouth College, University of Missouri, Dartmouth Cancer Center, Dartmouth Health

Abstract Preview: Purpose: Precise patient positioning is critical in accelerated partial breast irradiation (aPBI) to ensure accurate dose delivery to the tumor bed while minimizing exposure to surrounding healthy tis...

Real Time Monte Carlo Dose Calculation for Clinical Cyberknife Radiation Therapy Based on Deep Learning Diffusion Model

Authors: Ruiyan Du, He Huang, Mingzhu Li, Ying Li, Hongyu Lin, Wei Liu, Shihuan Qin, Yiming Ren, Hui Xu, Lian Zhang, Xiao Zhang, Zunhao Zhang

Affiliation: Department of Radiation Oncology, Mayo Clinic, Medical AI Lab, The First Hospital of Hebei Medical University, Hebei Provincial Engineering Research Center for AI-Based Cancer Treatment Decision-Making, The First Hospital of Hebei Medical University, Department of Oncology, The First Hospital of Hebei Medical University

Abstract Preview: Purpose: Monte Carlo (MC) dose calculation is the gold standard in clinical CyberKnife radiation therapy (RT), considering its steep dose gradients and high-freedom non-coplanar beam angles, but extre...

Scoring Functions for Reinforcement Learning in Accelerated Partial Breast Irradiation Treatment Planning

Authors: Rafe A. McBeth, Kuancheng Wang, Ledi Wang

Affiliation: Department of Radiation Oncology, University of Pennsylvania, Georgia Institute of Technology, University of Pennsylvania

Abstract Preview: Purpose:
The integration of AI in clinical workflows presents unprecedented opportunities to enhance treatment quality in radiation oncology, yet it also demands innovative approaches to address th...

Simulating Realistic Digital Phantoms for Virtual Clinical Trials in Radiology and Radiation Oncology Using a Deep-Learning Based Conditional Denoising Diffusion Probabilistic Model (c-DDPM)

Authors: Matthew Brown, Yushi Chang, Jinhyuk Choi, William Silva Mendes, Lei Ren, Aman Sangal, William Paul Segars, Phuoc Tran, Hualiang Zhong

Affiliation: University of Maryland School of Medicine, Department of Radiation Oncology, University of Maryland School of Medicine, Carl E. Ravin Advanced Imaging Laboratories and Center for Virtual Imaging Trials, Duke University Medical Center, Department of Radiation Oncology, Medical College of Wisconsin

Abstract Preview: Purpose: Digital phantoms like XCAT are essential for imaging and treatment optimization in radiology and radiation oncology. However, the lack of realistic textures (HU distribution) in XCAT limits i...

Targeted Precision: A Deep Dive into Stereotactic Radiosurgery Delivery

Authors: Matthew Caldwell

Affiliation: JTC Medical Physics

Abstract Preview: N/A...