Authors: Matthew S Brown, Joshua Genender, John M. Hoffman, Gabriel Melendez-Corres, Muhammad W. Wahi-Anwar
Affiliation: David Geffen School of Medicine at UCLA, UCLA Department of Radiology
Abstract Preview: Purpose: Renal lesions are evaluated using scoring systems based on visual assessments and manual measurements. The purpose of this work is to develop a multi-agent system for automated anatomic landm...
Authors: Weiguo Lu, Hua-Chieh Shao, Guoping Xu, You Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center
Abstract Preview: Purpose:
Neural network-based lesion segmentation remains a significant challenge due to the low contrast between lesions and surrounding tissues (high ambiguity) and the variability of lesion shap...
Authors: Weiguo Lu, Jax Luo, Xiaoxue Qian, Hua-Chieh Shao, Guoping Xu, You Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, Harvard Medical School
Abstract Preview: Purpose:
Semi-supervised segmentation leverages sparse annotation information to learn rich representations from combined labeled and label-less data for segmentation tasks. This study leverages th...
Authors: Weigang Hu
Affiliation: Fudan University Shanghai Cancer Center
Abstract Preview: Purpose: The purpose of this study is to introduce a VQVAE-based framework that addresses the limitations of conventional dose prediction methods, which rely on fixed deep learning models that produce...
Authors: Amir Abdollahi, Oliver Jäkel, Maxmillian Knoll, Rakshana Murugan, Adithya Raman, Patrick Salome
Affiliation: UKHD & DKFZ, Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), German Cancer Research Centre(DKFZ), DKFZ, MGH
Abstract Preview: Purpose:
Missing MRI sequences, due to technical issues in data handling or clinical constraints like contrast agent intolerance, limit the use of medical imaging datasets in computational analysis...
Authors: Hui-Shan Jian, Yu-Ying Lin
Affiliation: Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou
Abstract Preview: Purpose: The image quality assurance of mammographic images is crucial for correct diagnosis. To develop and validate an explainable deep-learning classifier for phantom image quality assessment of di...
Authors: Xiaolong Fu, Runping Hou, Md Tauhidul Islam, Lei Xing
Affiliation: Department of Radiation Oncology, Stanford University, Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine
Abstract Preview: Purpose: To introduce a novel schematic image representation of radiomics data, called OmicsMap, for high-performance deep radiomics analysis. OmicsMap transforms tabular radiomics data into an image ...
Authors: Steve B. Jiang, Dan Nguyen, Chenyang Shen, Fan-Chi F. Su, Jiacheng Xie, Shunyu Yan, Daniel Yang, Ying Zhang, You Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, The University of Texas at Dallas
Abstract Preview: Purpose: Accurate delineation of treatment targets and organs-at-risk is crucial for radiotherapy. Despite significant progress in artificial intelligence (AI)-based automatic segmentation tools, effi...
Authors: Chuangxin Chu, Haotian Huang, Tianhao Li, Jingyu Lu, Zhenyu Yang, Fang-Fang Yin, Tianyu Zeng, Chulong Zhang, Yujia Zheng
Affiliation: The Hong Kong Polytechnic University, Nanyang Technological University, Australian National University, Medical Physics Graduate Program, Duke Kunshan University, North China University of Technology, Duke Kunshan University
Abstract Preview: Purpose: Deep learning segmentation models, such as U-Net, rely on high-quality image-segmentation pairs for accurate predictions. However, the recent increasing use of generative networks for creatin...
Authors: Mehdi Amini, Minerva Becker, Simina Chiriac, Alexandre Cusin, Dimitrios Daskalou, Ghasem Hajianfar, Sophie Neveu, Marcella Pucci, Yazdan Salimi, Pascal Senn, Habib Zaidi
Affiliation: Geneva University Hospital, Division of Radiology, Diagnostic Department, Geneva University Hospitals, Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals
Abstract Preview: Purpose: Personalized prediction of vestibular schwannoma (VS) tumour growth is crucial for guiding patient management decisions toward observation versus intervention. This study proposes an automate...
Authors: Austin Castelo, Xinru Chen, Caroline Chung, Laurence Edward Court, Jaganathan A Parameshwaran, Zhan Xu, Jinzhong Yang, Yao Zhao
Affiliation: The University of Texas MD Anderson Cancer Center, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center
Abstract Preview: Purpose:
To develop a deep learning-based segmentation model to automatically delineate tumors from full-body PET/CT images.
Methods:
PET/CT image pairs of 91 patients were collected for this...
Authors: Hajar Moradmand, Lei Ren
Affiliation: University of Maryland School of Medicine, University of Maryland
Abstract Preview: Purpose:
The Sharp-van der Heijde (SvH) score is essential for assessing joint damage in rheumatoid arthritis (RA) from radiographic images. However, manual scoring is time-intensive and prone to v...
Authors: Evan Calabrese, Hangjie Ji, Kyle J. Lafata, Casey Y. Lee, Eugene Vaios, Chunhao Wang, Lana Wang, Zhenyu Yang, Jingtong Zhao
Affiliation: Duke University, Department of Radiation Oncology, Duke University, Duke Kunshan University, North Carolina State University
Abstract Preview: Purpose: To develop a biologically guided deep learning (DL) model for predicting brain metastasis(BM) local control outcomes following stereotactic radiosurgery (SRS). By integrating pre-SRS MR image...
Authors: Sahaja Acharya, Matthew Ladra, Junghoon Lee, Lina Mekki
Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Department of Biomedical Engineering, Johns Hopkins University
Abstract Preview: Purpose: Multi-parametric MRI (mpMRI) is widely used for deep learning (DL)-based automatic segmentation of brain tumors. While multi-contrast images concatenated as channels are typically input to ne...
Authors: Hao Peng, Yajun Yu
Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center
Abstract Preview: Purpose: Personalized ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) is a new treatment paradigm pioneered by our institution. But the early decision-making process in PULSAR is challe...
Authors: Mingli Chen, Huan Amanda Liu, Weiguo Lu, Lin Ma
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Mayo Clinic
Abstract Preview: Purpose: To reduce the back-and-forth in planning process between physicians and dosimetrists resulting from trade-off exploration, we proposed a novel deep learning framework called DeepTuning.
Me...
Authors: Maryellen L. Giger, Fahd Hatoum, Robert Tomek, Heather M. Whitney
Affiliation: The University of Chicago
Abstract Preview: Purpose: To assess the importance of applying stratified sampling across demographic attributes (including age, sex, race, and ethnicity) when constructing training and testing datasets for ML-based d...
Authors: Julia Bauer, Tianxue Du, Katia Parodi, Marco Pinto, Thomas Tessonnier
Affiliation: Department of Medical Physics, Ludwig-Maximilians-Universität (LMU) München, Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich)
Abstract Preview: Purpose:
Carbon ion therapy could benefit from range verification due to its sensitivity to range uncertainties. Positron emission tomography (PET) aids in this and comparing irradiation-induced PE...
Authors: Victoria Doss, Tsion Gebre, Rachel B. Ger, Esi A Hagan, Elaina Hales, Russell K Hales, Xun Jia, Heng Li, Dezhi Liu, Todd R. McNutt, Meti Negassa, Anas Obaideen, Tinker Trent, K. Ranh Voong, Cecilia FPM de Sousa
Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Johns Hopkins University
Abstract Preview: Purpose: As cancer care advances, more patients require re-irradiation, yet evidence-based data is lacking. This study aimed to develop a thoracic re-irradiation database and explore time-dependent re...
Authors: Wei Wei, Yading Yuan
Affiliation: Columbia University Irving Medical Center, Department of Radiation Oncology
Abstract Preview: Purpose: To investigate an uncertainty modeling method to improve the performance of cancer classification with the ability to produce uncertainty score.
Methods: Deep learning has achieved state-o...
Authors: Jeffrey D. Bradley, Steven J. Feigenberg, Cole Friedes, Yin Gao, Xun Jia, Kevin Teo, Lingshu Yin, Jennifer Wei Zou
Affiliation: Department of Radiation Oncology, University of Pennsylvania, Johns Hopkins University
Abstract Preview: Purpose: Understanding how physicians evaluate plans is critical for automatic planning and ensuring consistent, high-quality care. While deep-learning models excel in complex decision-making, the lac...
Authors: Yoonha Eo
Affiliation: Yonsei University
Abstract Preview: Purpose: To develop a fully automatic and unsupervised algorithm for estimating the Exposure Index (EI) of various Regions of Interest in X-ray imaging using advanced foundation models. Traditional EI...
Authors: Md Tauhidul Islam, Junyan Liu, Lei Xing
Affiliation: Department of Radiation Oncology, Stanford University
Abstract Preview: Purpose: Radiation-induced lung injury (RILI) is a common complication in patients receiving radiotherapy for lung cancer, with approximately 16%–28% developing pulmonary fibrosis. The exact mechanism...
Authors: Michael Dohopolski, Jiaqi Liu, Hao Peng, Robert Timmerman, Zabi Wardak, Haozhao Zhang
Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center
Abstract Preview: Purpose:
This study introduces a gradient-based radiomics framework to enhance outcome prediction in Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy (PULSAR) for brain metastases...
Authors: Evan Calabrese, Scott R. Floyd, Kyle J. Lafata, Zachary J. Reitman, Eugene Vaios, Chunhao Wang, Lana Wang, Deshan Yang, Zhenyu Yang, Jingtong Zhao
Affiliation: Duke University, Department of Radiation Oncology, Duke University, Duke Kunshan University
Abstract Preview: Purpose:
This study proposes a novel neural ordinary differential equation (NODE) framework to distinguish post-SRS radionecrosis from recurrence in brain metastases (BMs). By integrating imaging f...
Authors: Clemens Grassberger, David (Bo) McClatchy, Harald Paganetti
Affiliation: Department of Radiation Oncology, University of Washington and Fred Hutchinson Cancer Center, Massachusetts General Hospital
Abstract Preview: Purpose: While randomized controlled trials (RCTs) are the gold standard for demonstrating efficacy, nearly 50% of late-stage clinical trials fail to meet their endpoint. Tools to study the design of ...
Authors: Xun Jia, Youfang Lai
Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Johns Hopkins University
Abstract Preview: Purpose: Ultrahigh dose rate FLASH (>40 Gy/s) radiotherapy (RT) has attracted significant attention. The mechanism remains unclear, hindering clinical translation. This study investigated the behavior...
Authors: William N. Duggar, Amirhossein Eskorouchi, Haifeng Wang
Affiliation: Mississippi State University, University of Mississippi Medical Center
Abstract Preview: Purpose:
Extracapsular extension (ECE) in lymph nodes represents a critical prognostic factor in head and neck squamous cell carcinoma (HNSCC), bearing important implications for staging, treatment...
Authors: John Byun, Steven D Chang, Mingli Chen, Cynthia Chuang, Xuejun Gu, Melanie Hayden Gephart, Yusuke Hori, Hao Jiang, Mahdieh Kazemimoghadam, Fred Lam, Gordon Li, Lianli Liu, Weiguo Lu, David Park, Erqi Pollom, Elham Rahimy, Deyaaldeen Abu Reesh, Scott Soltys, Gregory Szalkowski, Lei Wang, Qingying Wang, Zi Yang, Xianghua Ye, Kangning Zhang
Affiliation: Department of Radiation Oncology, Stanford University, Department of Neurosurgery, Stanford University, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose: Accurate prediction of pain relief is crucial in determining the clinical effectiveness of Stereotactic body radiotherapy (SBRT) regimen for spine metastases. We propose a deep-learning frame...
Authors: Steve B. Jiang, Mu-Han Lin, Yu-Chen Lin, Austen Matthew Maniscalco, Dan Nguyen, David Sher, Xinran Zhong
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, UT Southwestern Medical Center, UT Dallas
Abstract Preview: Purpose:
Sequential boost radiotherapy (RT) poses a challenge in allocating dose across multiple plans while protecting organs at risk (OARs). Clinicians must decide whether OAR sparing should occu...
Authors: Martin Frank, Oliver Jäkel, Niklas Wahl
Affiliation: Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Karlsruhe Institute of Technology (KIT)
Abstract Preview: Purpose: Machine learning (ML) models on normal tissue complication and tumor control probability ((N)TCP) exploiting e.g. dosiomic and radiomic features are playing an increasingly important role in ...
Authors: Yeona Cho, Chloe Min Seo Choi, Joseph O. Deasy, Jue Jiang, Jihun Kim, Jin Sung Kim, Nikhil Mankuzhy, Aneesh Rangnekar, Andreas Rimner, Maria Thor, Harini Veeraraghavan, Abraham Wu
Affiliation: University of Freibrug, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Memorial Sloan Kettering Cancer Center, Yonsei University
Abstract Preview: Purpose: We hypothesized that combining clinical, imaging, and radiotherapy dose-distribution features could increase predictive model accuracy in radiation-induced severe acute esophagitis (SAE) in e...
Authors: Yan Dai, Jie Deng, Xun Jia, Wen Li, Junzhong Xu
Affiliation: Johns Hopkins University, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Department of Radiology, Vanderbilt University Medical Center, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center
Abstract Preview: Purpose: Cell size is a vital parameter in evaluating the tumor microenvironment, including cell apoptosis and radiotherapy(RT)-induced immune cell infiltration. The IMPULSED(Imaging Microstructural P...
Authors: Wouter Crijns, Frederik Maes, Loes Vandenbroucke, Liesbeth Vandewinckele
Affiliation: Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven; Department of Radiation Oncology, UZ Leuven, Department ESAT/PSI, KU Leuven; Medical Imaging Research Center, UZ Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven
Abstract Preview: Purpose: To explore intentional deep overfit learning (IDOL) to exploit the initial treatment plan to predict an adaptive radiotherapy plan.
Methods: A conditional generative adversarial network is...
Authors: Ricardo Garcia Santiago, Narges Miri, Daryl P. Nazareth, Ankit Pant, Mukund Seshadri
Affiliation: Roswell Park Comprehensive Cancer Center
Abstract Preview: Purpose: To develop a transformer-based deep learning network framework for predicting VMAT dose distributions. This can provide fast and efficient calculations with accuracies potentially comparable ...
Authors: Osama R. Mawlawi, Yiran Sun
Affiliation: RICE University, UT MD Anderson Cancer Center
Abstract Preview: Purpose: Conventional PET reconstruction methods often produce noisy images with artifacts due to data/model mismatches and inconsistencies. Recently, deep learning-based conditional denoising diffusi...
Authors: Hilary P Bagshaw, Mark K Buyyounouski, Xianjin Dai, PhD, Praveenbalaji Rajendran, Lei Xing, Yong Yang
Affiliation: Department of Radiation Oncology, Stanford University, Massachusetts General Hospital, Harvard Medical School
Abstract Preview: Purpose: Artificial intelligence (AI)-driven methods have transformed dose prediction, streamlining the automation of radiotherapy treatment planning. However, traditional approaches depend exclusivel...
Authors: Eric Aliotta, Michalis Aristophanous, Joseph O. Deasy, Bill Diplas, Milan Grkovski, James Han, Vaios Hatzoglou, Jeho Jeong, Nancy Y Lee, Ramesh Paudyal, Nadeem Riaz, Heiko Schoder, Amita Shukla-Dave
Affiliation: Department of Radiology, Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center
Abstract Preview: Purpose: To forecast radiotherapy treatment response for head and neck cancer (HNC) using multimodality imaging and personalized radiobiological modeling.
Methods: Multi-modality imaging data from ...
Authors: Muhammad Ramish Ashraf, Clinton Gibson, Gregory Szalkowski, Lei Wang, Siqi Wang, Lei Xing
Affiliation: Department of Radiation Oncology, Stanford University, Department of Radiation Oncology, Stanford University School of Medicine, Stanford University
Abstract Preview: Purpose: To develop a neural network-based super-resolution framework for enhancing the resolution of sparse dosimetry measurements in patient-specific radiotherapy QA. Sparse detector arrays, such as...
Authors: Daisuke Kawahara, Takaaki Matsuura, Yuji Murakami, Ryunosuke Yanagida
Affiliation: Hiroshima High-Precision Radiotherapy Cancer Center, Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima
Abstract Preview: Purpose: In recent years, automation in radiation therapy planning using AI has gained significant attention to reduce the workload of treatment planners. Adaptive Radiation Therapy (ART), as a new fo...
Authors: Rafe A. McBeth, Kuancheng Wang, Ledi Wang
Affiliation: Department of Radiation Oncology, University of Pennsylvania, Georgia Institute of Technology, University of Pennsylvania
Abstract Preview: Purpose:
The integration of AI in clinical workflows presents unprecedented opportunities to enhance treatment quality in radiation oncology, yet it also demands innovative approaches to address th...
Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose:
This work demonstrates how existing software, when creatively adapted, can address a wide range of clinical challenges. By focusing on data exploration and application-specific modificatio...
Authors: Stephen R. Bowen, Shijun Chen, Chunyan Duan, Daniel S. Hippe, Qiantuo Liu, Qianqian Tong, Jiajie Wang, Shouyi Wang, Faisal Yaseen
Affiliation: The University of Texas at Austin, Tongji University, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Fred Hutchinson Cancer Center, University of Texas at Arlington
Abstract Preview: Purpose: Tumor subregion clustering and prediction of region-specific response can augment assessments and adaptive treatment decisions. A modeling framework was constructed to predict chemoradiation ...
Authors: Yunxiang Li, Weiguo Lu, Xiaoxue Qian, Hua-Chieh Shao, You Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center
Abstract Preview: Purpose:
Curating high-quality, labeled data for medical image segmentation can be challenging and costly, considering the existence of various image domains with differing modalities/protocols. Cr...
Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Zi Yang, Kangning Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose: Dose prediction (DP) is essential in guiding radiotherapy planning. However, current DP models for intensity-modulated radiation therapy (IMRT) primarily rely on fixed-beam orientations and a...
Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose:
Converting MR images to synthetic CT (MR2sCT) is highly desirable as it streamlines the radiotherapy treatment planning workflow. This approach leverages the superior soft tissue visibilit...
Authors: Eric S. Diffenderfer, Lei Dong, Alejandro Garcia, Wenbo Gu, Michele M. Kim, Alexander Lin, Kai Mei, Peter B. Noël, Boon-Keng Kevin Teo, Lingshu Yin, Jennifer Wei Zou
Affiliation: Department of Radiation Oncology, University of Pennsylvania, University of Pennsylvania
Abstract Preview: Purpose: We present a novel 3D-printed range-modulating devices with spatially modulated density for FLASH particle therapy. By varying density distributions, spread-out Bragg peaks(SOBPs) can be gene...