Search Submissions 🔎

Results for "prediction framework": 47 found

A Multi-Agent Approach for Fully Automated Nephrometry Feature Extraction in CT

Authors: Matthew S Brown, Joshua Genender, John M. Hoffman, Gabriel Melendez-Corres, Muhammad W. Wahi-Anwar

Affiliation: David Geffen School of Medicine at UCLA, UCLA Department of Radiology

Abstract Preview: Purpose: Renal lesions are evaluated using scoring systems based on visual assessments and manual measurements. The purpose of this work is to develop a multi-agent system for automated anatomic landm...

A Novel Margin-Based Focal Distance Loss for Lesion Segmentation in Medical Imaging

Authors: Weiguo Lu, Hua-Chieh Shao, Guoping Xu, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Neural network-based lesion segmentation remains a significant challenge due to the low contrast between lesions and surrounding tissues (high ambiguity) and the variability of lesion shap...

A SAM-Guided and Match-Based Semi-Supervised Segmentation Framework for Medical Imaging

Authors: Weiguo Lu, Jax Luo, Xiaoxue Qian, Hua-Chieh Shao, Guoping Xu, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, Harvard Medical School

Abstract Preview: Purpose:
Semi-supervised segmentation leverages sparse annotation information to learn rich representations from combined labeled and label-less data for segmentation tasks. This study leverages th...

A Vqvae-Based Framework with Embedded Kullback-Leibler Divergence for Stochastic and Diverse Dose Prediction

Authors: Weigang Hu

Affiliation: Fudan University Shanghai Cancer Center

Abstract Preview: Purpose: The purpose of this study is to introduce a VQVAE-based framework that addresses the limitations of conventional dose prediction methods, which rely on fixed deep learning models that produce...

Addressing Missing MRI Sequences: A DL-Based Region-Focused Multi-Sequence Framework for Synthetic Image Generation

Authors: Amir Abdollahi, Oliver Jäkel, Maxmillian Knoll, Rakshana Murugan, Adithya Raman, Patrick Salome

Affiliation: UKHD & DKFZ, Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), German Cancer Research Centre(DKFZ), DKFZ, MGH

Abstract Preview: Purpose:
Missing MRI sequences, due to technical issues in data handling or clinical constraints like contrast agent intolerance, limit the use of medical imaging datasets in computational analysis...

An Explainable Classifier for Enhancing the Quality Assurance of Digital Breast Tomosynthesis Phantom Images

Authors: Hui-Shan Jian, Yu-Ying Lin

Affiliation: Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou

Abstract Preview: Purpose: The image quality assurance of mammographic images is crucial for correct diagnosis. To develop and validate an explainable deep-learning classifier for phantom image quality assessment of di...

An Image Representation of Radiomics Data for Enhanced Deep Radiomics Analysis with Consideration of Feature Interactions

Authors: Xiaolong Fu, Runping Hou, Md Tauhidul Islam, Lei Xing

Affiliation: Department of Radiation Oncology, Stanford University, Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine

Abstract Preview: Purpose: To introduce a novel schematic image representation of radiomics data, called OmicsMap, for high-performance deep radiomics analysis. OmicsMap transforms tabular radiomics data into an image ...

Artificial Intelligence (AI)-Driven Automatic Contour Quality Assurance (QA) with Uncertainty Quantification

Authors: Steve B. Jiang, Dan Nguyen, Chenyang Shen, Fan-Chi F. Su, Jiacheng Xie, Shunyu Yan, Daniel Yang, Ying Zhang, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, The University of Texas at Dallas

Abstract Preview: Purpose: Accurate delineation of treatment targets and organs-at-risk is crucial for radiotherapy. Despite significant progress in artificial intelligence (AI)-based automatic segmentation tools, effi...

Assessing the Risks of Synthetic MRI Data in Deep Learning: A Study on U-Net Segmentation Accuracy

Authors: Chuangxin Chu, Haotian Huang, Tianhao Li, Jingyu Lu, Zhenyu Yang, Fang-Fang Yin, Tianyu Zeng, Chulong Zhang, Yujia Zheng

Affiliation: The Hong Kong Polytechnic University, Nanyang Technological University, Australian National University, Medical Physics Graduate Program, Duke Kunshan University, North China University of Technology, Duke Kunshan University

Abstract Preview: Purpose: Deep learning segmentation models, such as U-Net, rely on high-quality image-segmentation pairs for accurate predictions. However, the recent increasing use of generative networks for creatin...

Automated Framework for Predicting Tumour Growth in Vestibular Schwannomas Using Contrast-Enhanced T1-Weighted MRI

Authors: Mehdi Amini, Minerva Becker, Simina Chiriac, Alexandre Cusin, Dimitrios Daskalou, Ghasem Hajianfar, Sophie Neveu, Marcella Pucci, Yazdan Salimi, Pascal Senn, Habib Zaidi

Affiliation: Geneva University Hospital, Division of Radiology, Diagnostic Department, Geneva University Hospitals, Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals

Abstract Preview: Purpose: Personalized prediction of vestibular schwannoma (VS) tumour growth is crucial for guiding patient management decisions toward observation versus intervention. This study proposes an automate...

Automated Full-Body Tumor Segmentation from PET/CT Images

Authors: Austin Castelo, Xinru Chen, Caroline Chung, Laurence Edward Court, Jaganathan A Parameshwaran, Zhan Xu, Jinzhong Yang, Yao Zhao

Affiliation: The University of Texas MD Anderson Cancer Center, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center

Abstract Preview: Purpose:
To develop a deep learning-based segmentation model to automatically delineate tumors from full-body PET/CT images.
Methods:
PET/CT image pairs of 91 patients were collected for this...

Automating Radiographic Sharp Score Prediction in Rheumatoid Arthritis Using Multistage Deep Learning Methods

Authors: Hajar Moradmand, Lei Ren

Affiliation: University of Maryland School of Medicine, University of Maryland

Abstract Preview: Purpose:
The Sharp-van der Heijde (SvH) score is essential for assessing joint damage in rheumatoid arthritis (RA) from radiographic images. However, manual scoring is time-intensive and prone to v...

Biologically Guided Deep Learning for MRI-Based Brain Metastasis Outcome Prediction after Stereotactic Radiosurgery

Authors: Evan Calabrese, Hangjie Ji, Kyle J. Lafata, Casey Y. Lee, Eugene Vaios, Chunhao Wang, Lana Wang, Zhenyu Yang, Jingtong Zhao

Affiliation: Duke University, Department of Radiation Oncology, Duke University, Duke Kunshan University, North Carolina State University

Abstract Preview: Purpose: To develop a biologically guided deep learning (DL) model for predicting brain metastasis(BM) local control outcomes following stereotactic radiosurgery (SRS). By integrating pre-SRS MR image...

Brain Tumor Segmentation from Multi-Parametric MRI with Integrated Evidential Uncertainty Estimation

Authors: Sahaja Acharya, Matthew Ladra, Junghoon Lee, Lina Mekki

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Department of Biomedical Engineering, Johns Hopkins University

Abstract Preview: Purpose: Multi-parametric MRI (mpMRI) is widely used for deep learning (DL)-based automatic segmentation of brain tumors. While multi-contrast images concatenated as channels are typically input to ne...

Compressed Sensing Enhanced Radiomic Feature Selection for Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy (PULSAR)

Authors: Hao Peng, Yajun Yu

Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Personalized ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) is a new treatment paradigm pioneered by our institution. But the early decision-making process in PULSAR is challe...

Deeptuning: A Deep Learning Dose Prediction Framework for Interactive Plan Tuning

Authors: Mingli Chen, Huan Amanda Liu, Weiguo Lu, Lin Ma

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Mayo Clinic

Abstract Preview: Purpose: To reduce the back-and-forth in planning process between physicians and dosimetrists resulting from trade-off exploration, we proposed a novel deep learning framework called DeepTuning.
Me...

Demographic Attributes of the Train-Test Sets and Their Impact on AI Performance: Medical Imaging Applications

Authors: Maryellen L. Giger, Fahd Hatoum, Robert Tomek, Heather M. Whitney

Affiliation: The University of Chicago

Abstract Preview: Purpose: To assess the importance of applying stratified sampling across demographic attributes (including age, sex, race, and ethnicity) when constructing training and testing datasets for ML-based d...

Development and Clinical Validation of an Analytical Approach for 3D Positron Emitter Distribution Prediction in Carbon Ion Therapy

Authors: Julia Bauer, Tianxue Du, Katia Parodi, Marco Pinto, Thomas Tessonnier

Affiliation: Department of Medical Physics, Ludwig-Maximilians-Universität (LMU) München, Heidelberg Ion Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich)

Abstract Preview: Purpose:
Carbon ion therapy could benefit from range verification due to its sensitivity to range uncertainties. Positron emission tomography (PET) aids in this and comparing irradiation-induced PE...

Development of a Comprehensive Thoracic Re-Irradiation Database and Investigation of Time-Dependent Dose-Recovery Dynamics for Toxicity Modeling

Authors: Victoria Doss, Tsion Gebre, Rachel B. Ger, Esi A Hagan, Elaina Hales, Russell K Hales, Xun Jia, Heng Li, Dezhi Liu, Todd R. McNutt, Meti Negassa, Anas Obaideen, Tinker Trent, K. Ranh Voong, Cecilia FPM de Sousa

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Johns Hopkins University

Abstract Preview: Purpose: As cancer care advances, more patients require re-irradiation, yet evidence-based data is lacking. This study aimed to develop a thoracic re-irradiation database and explore time-dependent re...

Discriminative Uncertainty Learning for Cancer Classification

Authors: Wei Wei, Yading Yuan

Affiliation: Columbia University Irving Medical Center, Department of Radiation Oncology

Abstract Preview: Purpose: To investigate an uncertainty modeling method to improve the performance of cancer classification with the ability to produce uncertainty score.
Methods: Deep learning has achieved state-o...

Explainable AI with Attention Gates for Transparent and Interpretable Lung Radiotherapy Plan Evaluation

Authors: Jeffrey D. Bradley, Steven J. Feigenberg, Cole Friedes, Yin Gao, Xun Jia, Kevin Teo, Lingshu Yin, Jennifer Wei Zou

Affiliation: Department of Radiation Oncology, University of Pennsylvania, Johns Hopkins University

Abstract Preview: Purpose: Understanding how physicians evaluate plans is critical for automatic planning and ensuring consistent, high-quality care. While deep-learning models excel in complex decision-making, the lac...

Fully Automatic Pipelines for Anatomical ROI Detection and Exposure Index Calculation in X-Ray Imaging : Foundation Model-Based Frameworks for Dose Standardization

Authors: Yoonha Eo

Affiliation: Yonsei University

Abstract Preview: Purpose: To develop a fully automatic and unsupervised algorithm for estimating the Exposure Index (EI) of various Regions of Interest in X-ray imaging using advanced foundation models. Traditional EI...

Gene Interaction-Encoded Deep Learning Uncovers Microenvironment for Radiation-Induced Pulmonary Fibrosis

Authors: Md Tauhidul Islam, Junyan Liu, Lei Xing

Affiliation: Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose: Radiation-induced lung injury (RILI) is a common complication in patients receiving radiotherapy for lung cancer, with approximately 16%–28% developing pulmonary fibrosis. The exact mechanism...

Gradient-Based Radiomics for Outcome Prediction and Decision-Making in Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy (PULSAR): A Preliminary Study

Authors: Michael Dohopolski, Jiaqi Liu, Hao Peng, Robert Timmerman, Zabi Wardak, Haozhao Zhang

Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
This study introduces a gradient-based radiomics framework to enhance outcome prediction in Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy (PULSAR) for brain metastases...

Improving Post-SRS Brain Metastasis Radionecrosis Diagnosis Accuracy Via Deep Feature Space Analysis

Authors: Evan Calabrese, Scott R. Floyd, Kyle J. Lafata, Zachary J. Reitman, Eugene Vaios, Chunhao Wang, Lana Wang, Deshan Yang, Zhenyu Yang, Jingtong Zhao

Affiliation: Duke University, Department of Radiation Oncology, Duke University, Duke Kunshan University

Abstract Preview: Purpose:
This study proposes a novel neural ordinary differential equation (NODE) framework to distinguish post-SRS radionecrosis from recurrence in brain metastases (BMs). By integrating imaging f...

In-Silico Clinical Trials Enabled By Digital Twin Approach Can Accurately and Prospectively Predict Outcomes of Clinical Trials Combining Radiation and Systemic Therapy

Authors: Clemens Grassberger, David (Bo) McClatchy, Harald Paganetti

Affiliation: Department of Radiation Oncology, University of Washington and Fred Hutchinson Cancer Center, Massachusetts General Hospital

Abstract Preview: Purpose: While randomized controlled trials (RCTs) are the gold standard for demonstrating efficacy, nearly 50% of late-stage clinical trials fail to meet their endpoint. Tools to study the design of ...

Investigating X-Ray Flash Effect on Plasmid DNA with Combined Microscopic Monte Carlo and Analytical Simulations

Authors: Xun Jia, Youfang Lai

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Johns Hopkins University

Abstract Preview: Purpose: Ultrahigh dose rate FLASH (>40 Gy/s) radiotherapy (RT) has attracted significant attention. The mechanism remains unclear, hindering clinical translation. This study investigated the behavior...

Knowledge-Informed Deep Learning for Accurate and Interpretable Extracapsular Extension Detection in Head and Neck Squamous Cell Carcinoma

Authors: William N. Duggar, Amirhossein Eskorouchi, Haifeng Wang

Affiliation: Mississippi State University, University of Mississippi Medical Center

Abstract Preview: Purpose:
Extracapsular extension (ECE) in lymph nodes represents a critical prognostic factor in head and neck squamous cell carcinoma (HNSCC), bearing important implications for staging, treatment...

LLM-Enhanced Multi-Modal Framework for Predicting Pain Relief of Stereotactic Body Radiotherapy for Spine Metastases Using Clinical Factors and Imaging Reports

Authors: John Byun, Steven D Chang, Mingli Chen, Cynthia Chuang, Xuejun Gu, Melanie Hayden Gephart, Yusuke Hori, Hao Jiang, Mahdieh Kazemimoghadam, Fred Lam, Gordon Li, Lianli Liu, Weiguo Lu, David Park, Erqi Pollom, Elham Rahimy, Deyaaldeen Abu Reesh, Scott Soltys, Gregory Szalkowski, Lei Wang, Qingying Wang, Zi Yang, Xianghua Ye, Kangning Zhang

Affiliation: Department of Radiation Oncology, Stanford University, Department of Neurosurgery, Stanford University, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose: Accurate prediction of pain relief is crucial in determining the clinical effectiveness of Stereotactic body radiotherapy (SBRT) regimen for spine metastases. We propose a deep-learning frame...

Multi-Scale, Multi-Task Framework with Jacobian Descent for Multi-Plan Dose Prediction in Sequential Boost Radiotherapy

Authors: Steve B. Jiang, Mu-Han Lin, Yu-Chen Lin, Austen Matthew Maniscalco, Dan Nguyen, David Sher, Xinran Zhong

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, UT Southwestern Medical Center, UT Dallas

Abstract Preview: Purpose:
Sequential boost radiotherapy (RT) poses a challenge in allocating dose across multiple plans while protecting organs at risk (OARs). Clinicians must decide whether OAR sparing should occu...

Multi-Variat, Multi-Model, and Multi-Patient: From Pure Feasibility to Generalizability in Machine Learning Outcome Prediction Model-Based Treatment Plan Optimization

Authors: Martin Frank, Oliver Jäkel, Niklas Wahl

Affiliation: Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Karlsruhe Institute of Technology (KIT)

Abstract Preview: Purpose: Machine learning (ML) models on normal tissue complication and tumor control probability ((N)TCP) exploiting e.g. dosiomic and radiomic features are playing an increasingly important role in ...

Multimodal Framework for Predicting Radiation-Induced Severe Acute Esophagitis in Esophageal Cancer

Authors: Yeona Cho, Chloe Min Seo Choi, Joseph O. Deasy, Jue Jiang, Jihun Kim, Jin Sung Kim, Nikhil Mankuzhy, Aneesh Rangnekar, Andreas Rimner, Maria Thor, Harini Veeraraghavan, Abraham Wu

Affiliation: University of Freibrug, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Memorial Sloan Kettering Cancer Center, Yonsei University

Abstract Preview: Purpose: We hypothesized that combining clinical, imaging, and radiotherapy dose-distribution features could increase predictive model accuracy in radiation-induced severe acute esophagitis (SAE) in e...

Optimization of Impulsed Acquisition Protocols on 1.5T MRI Using Simulation-Based Bayesian Experimental Design for Cell Size Imaging

Authors: Yan Dai, Jie Deng, Xun Jia, Wen Li, Junzhong Xu

Affiliation: Johns Hopkins University, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Department of Radiology, Vanderbilt University Medical Center, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Cell size is a vital parameter in evaluating the tumor microenvironment, including cell apoptosis and radiotherapy(RT)-induced immune cell infiltration. The IMPULSED(Imaging Microstructural P...

Patient-Specific Treatment Plan Optimization through Intentional Deep Overfit Learning As a Warm Start for Longitudinal Adaptive Radiotherapy

Authors: Wouter Crijns, Frederik Maes, Loes Vandenbroucke, Liesbeth Vandewinckele

Affiliation: Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven; Department of Radiation Oncology, UZ Leuven, Department ESAT/PSI, KU Leuven; Medical Imaging Research Center, UZ Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven

Abstract Preview: Purpose: To explore intentional deep overfit learning (IDOL) to exploit the initial treatment plan to predict an adaptive radiotherapy plan.
Methods: A conditional generative adversarial network is...

Physics and Geometry Input-Based Neural Network Dose Engine

Authors: Ricardo Garcia Santiago, Narges Miri, Daryl P. Nazareth, Ankit Pant, Mukund Seshadri

Affiliation: Roswell Park Comprehensive Cancer Center

Abstract Preview: Purpose: To develop a transformer-based deep learning network framework for predicting VMAT dose distributions. This can provide fast and efficient calculations with accuracies potentially comparable ...

Posterior-Mean Diffusion Model for Realistic PET Image Reconstruction

Authors: Osama R. Mawlawi, Yiran Sun

Affiliation: RICE University, UT MD Anderson Cancer Center

Abstract Preview: Purpose: Conventional PET reconstruction methods often produce noisy images with artifacts due to data/model mismatches and inconsistencies. Recently, deep learning-based conditional denoising diffusi...

Precision Radiotherapy Dose Prediction Using Foundation Model-Augmented Learning

Authors: Hilary P Bagshaw, Mark K Buyyounouski, Xianjin Dai, PhD, Praveenbalaji Rajendran, Lei Xing, Yong Yang

Affiliation: Department of Radiation Oncology, Stanford University, Massachusetts General Hospital, Harvard Medical School

Abstract Preview: Purpose: Artificial intelligence (AI)-driven methods have transformed dose prediction, streamlining the automation of radiotherapy treatment planning. However, traditional approaches depend exclusivel...

Predicting and Monitoring Response to Head and Neck Cancer Radiotherapy Using Multi-Modality Imaging and Radiobiological Digital Twin Simulations

Authors: Eric Aliotta, Michalis Aristophanous, Joseph O. Deasy, Bill Diplas, Milan Grkovski, James Han, Vaios Hatzoglou, Jeho Jeong, Nancy Y Lee, Ramesh Paudyal, Nadeem Riaz, Heiko Schoder, Amita Shukla-Dave

Affiliation: Department of Radiology, Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: To forecast radiotherapy treatment response for head and neck cancer (HNC) using multimodality imaging and personalized radiobiological modeling.
Methods: Multi-modality imaging data from ...

Prior-Informed Neural Super-Resolution Dosimetry for Radiotherapy QA from Sparse Dosimeter Arrays

Authors: Muhammad Ramish Ashraf, Clinton Gibson, Gregory Szalkowski, Lei Wang, Siqi Wang, Lei Xing

Affiliation: Department of Radiation Oncology, Stanford University, Department of Radiation Oncology, Stanford University School of Medicine, Stanford University

Abstract Preview: Purpose: To develop a neural network-based super-resolution framework for enhancing the resolution of sparse dosimetry measurements in patient-specific radiotherapy QA. Sparse detector arrays, such as...

Real-Time Fully Automated IMRT Planning without Optimization Process Using a Two-Step AI Framework

Authors: Daisuke Kawahara, Takaaki Matsuura, Yuji Murakami, Ryunosuke Yanagida

Affiliation: Hiroshima High-Precision Radiotherapy Cancer Center, Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima

Abstract Preview: Purpose: In recent years, automation in radiation therapy planning using AI has gained significant attention to reduce the workload of treatment planners. Adaptive Radiation Therapy (ART), as a new fo...

Scoring Functions for Reinforcement Learning in Accelerated Partial Breast Irradiation Treatment Planning

Authors: Rafe A. McBeth, Kuancheng Wang, Ledi Wang

Affiliation: Department of Radiation Oncology, University of Pennsylvania, Georgia Institute of Technology, University of Pennsylvania

Abstract Preview: Purpose:
The integration of AI in clinical workflows presents unprecedented opportunities to enhance treatment quality in radiation oncology, yet it also demands innovative approaches to address th...

Teaching an Old Dog New Tricks: Unlocking Hidden Potential in Existing Frameworks for Versatile Radiotherapy Applications

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose:
This work demonstrates how existing software, when creatively adapted, can address a wide range of clinical challenges. By focusing on data exploration and application-specific modificatio...

Two-Stage Clustering and Auto Machine Learning to Predict Chemoradiation Response in Tumor Subregions on FDG PET for La-NSCLC

Authors: Stephen R. Bowen, Shijun Chen, Chunyan Duan, Daniel S. Hippe, Qiantuo Liu, Qianqian Tong, Jiajie Wang, Shouyi Wang, Faisal Yaseen

Affiliation: The University of Texas at Austin, Tongji University, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Fred Hutchinson Cancer Center, University of Texas at Arlington

Abstract Preview: Purpose: Tumor subregion clustering and prediction of region-specific response can augment assessments and adaptive treatment decisions. A modeling framework was constructed to predict chemoradiation ...

Uncertainty-Guided Cross-Domain Adaptation for Unsupervised Medical Image Segmentation

Authors: Yunxiang Li, Weiguo Lu, Xiaoxue Qian, Hua-Chieh Shao, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Curating high-quality, labeled data for medical image segmentation can be challenging and costly, considering the existence of various image domains with differing modalities/protocols. Cr...

Unidose: A Universal Framework for IMRT Dose Prediction

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Zi Yang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose: Dose prediction (DP) is essential in guiding radiotherapy planning. However, current DP models for intensity-modulated radiation therapy (IMRT) primarily rely on fixed-beam orientations and a...

Universal MR-to-Synthetic CT: A Streamlined Framework for MR-Only Radiotherapy Planning

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose:
Converting MR images to synthetic CT (MR2sCT) is highly desirable as it streamlines the radiotherapy treatment planning workflow. This approach leverages the superior soft tissue visibilit...

Universal Range Modulators for Flash Proton Therapy: 3D Printing of Stackable Variable Density Units

Authors: Eric S. Diffenderfer, Lei Dong, Alejandro Garcia, Wenbo Gu, Michele M. Kim, Alexander Lin, Kai Mei, Peter B. Noël, Boon-Keng Kevin Teo, Lingshu Yin, Jennifer Wei Zou

Affiliation: Department of Radiation Oncology, University of Pennsylvania, University of Pennsylvania

Abstract Preview: Purpose: We present a novel 3D-printed range-modulating devices with spatially modulated density for FLASH particle therapy. By varying density distributions, spread-out Bragg peaks(SOBPs) can be gene...