Search Submissions πŸ”Ž

Results for "radiomics dosiomics": 10 found

A Combination of Radiomics and Dosiomics for Gross Tumor Volume Regression in Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy (PULSAR)

Authors: Hao Peng, Yajun Yu

Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Personalized ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) is a novel ablative radiation dosing scheme developed by our institution. This study aims to establish a regression...

A Multi-Omics Approach for Predicting Acute Hematologic Toxicity in Patients with Cervical Cancer Undergoing External-Beam Radiotherapy

Authors: Sijuan Huang, Yongbao Li

Affiliation: Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, 510060, China, Sun-Yat sen University Cancer Center

Abstract Preview: Purpose: Hematologic toxicity (HT) is one of the most prevalent treatment-related toxicities experienced by locally advanced cervical cancer (LACC) patients receiving radiotherapy (RT). This study aim...

A Multi-Regional and Multi-Omics Approach to Predict Penumonitis in Patients with Locally Advanced Non-Small Cell Lung Cancer in Nrg Oncology Trial RTOG 0617

Authors: Katelyn M. Atkins, Indrin J. Chetty, Elizabeth M. McKenzie, Taman Upadhaya, Samuel C. Zhang

Affiliation: Department of Radiation Oncology,Cedars-Sinai Medical Center, Cedars-Sinai Medical Center

Abstract Preview: Purpose:
We explored a multi-regional and multi-omics approach to extract CT-based radiomics and 3D dosiomics features to predict radiation pneumonitis (RP) in patients with locally advanced Non-Sm...

A Radiomics and Dosomics-Based Approach for Predicting Hematologic Toxicity in Patients with Cervical or Endometrial Cancer

Authors: Yongrui Bai, Xuming Chen, Yong Liu, Xiumei Ma

Affiliation: Department of Radiation Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Abstract Preview: Purpose: Hematologic toxicity (HT) is a common complication in patients with cervical or endometrial cancer. This study aims to develop a precise predictive model for acute HT in patients with cervica...

Development of a Radiomics-Dosiomics Mcode Ontology Extension for Radiotherapy

Authors: John Kildea, Odette Rios-Ibacache, Amal Zouaq

Affiliation: McGill University, Polytechnique MontrΓ©al

Abstract Preview: Purpose:
Even though Electronic medical records (EHRs) are now in widespread use in healthcare, and Artificial Intelligence tools incorporating radiomics are used to identify tumors in medical imag...

Multi-Omics-Based Prognostic Prediction for Locally Advanced Hypopharyngeal Cancer Treated with Postoperative Chemoradiotherapy: A Dual-Center Study

Authors: Sixue Dong, Chaosu Hu, Weigang Hu, Xiaomin Ou, Jiazhou Wang, Zhen Zhang

Affiliation: Fudan University Shanghai Cancer Center

Abstract Preview: Purpose:
This study aimed to predict the PFS of the patients who were diagnosed with hypopharyngeal cancer and received postoperative chemoradiotherapy by using multi-omics which integrating clinic...

Multi-Region Multiomic Features Improve Random Forest Toxicity Modeling of Radiation Pneumonitis

Authors: Laurence Edward Court, Alexandra Olivia Leone, Zhongxing Liao, Saurabh Shashikumar Nair, Joshua S. Niedzielski, Ramon Maurilio Salazar, Ting Xu

Affiliation: The University of Texas MD Anderson Cancer Center, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center

Abstract Preview: Purpose: Radiation Pneumonitis (RP) predictive models often rely on clinical and DVH parameters, but multiomic features from CT imaging and 3D dose distributions from various regions could provide add...

Multi-Variat, Multi-Model, and Multi-Patient: From Pure Feasibility to Generalizability in Machine Learning Outcome Prediction Model-Based Treatment Plan Optimization

Authors: Martin Frank, Oliver JΓ€kel, Niklas Wahl

Affiliation: Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Karlsruhe Institute of Technology (KIT)

Abstract Preview: Purpose: Machine learning (ML) models on normal tissue complication and tumor control probability ((N)TCP) exploiting e.g. dosiomic and radiomic features are playing an increasingly important role in ...

Predicting Hematologic Toxicity in Advanced Cervical Cancer Patients Using Interpretable Machine Learning Models Based on Radiomics and Dosimetrics

Authors: Qianxi Ni, Qionghui Zhou

Affiliation: The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University

Abstract Preview: Purpose:
This study aims to develop and evaluate interpretable machine learning models that use radiomic and dosimetric features to predict HT in advanced cervical cancer patients.
Methods:
R...

Prediction of Vertebral Compression Fracture after Stereotactic Body Radiotherapy for Spinal Metastases Using Clinical, Radiomic and Dosiomic Features

Authors: Yukio Fujita, Syoma Ide, Kei Ito, Tomohiro Kajikawa, Satoshi Kito, Keiko Murofushi, Yujiro Nakajima, Yuhi Suda, Kentaro Taguchi, Naoki Tohyama, Fumiya Tsurumaki

Affiliation: Komazawa University Graduate School, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Department of Radiology, Kyoto Prefectural University of Medicine

Abstract Preview: Purpose: Stereotactic body radiotherapy (SBRT) for spine metastases is more effective for pain relief and local control than conventional radiotherapy. However, it is associated with vertebral compres...