Authors: Ke Colin Huang, Zirui Jiang, Joshua Low, Christopher F. Njeh, Oluwaseyi Oderinde, Yong Yue
Affiliation: Purdue University, Indiana University School of Medicine, Department of Radiation Oncology
Abstract Preview: Purpose: Enhancing the accuracy of tumor response predictions enables the development of tailored therapeutic strategies for patients with breast cancer (BCa). In this study, we developed deep-radiomi...
Authors: Jingyuan Chen, Sheng Li, Tianming Liu, Wei Liu, Zhengliang Liu, Zhong Liu, Daniel Ma, Samir H. Patel, Guangya Wang, Yunze Yang
Affiliation: University of Miami, Mayo Clinic, School of Data Science, University of Virginia, School of Computing, University of Georgia, Department of Radiation Oncology, Mayo Clinic, Institute of Western China Economic Research, Southwestern University of Finance and Economics
Abstract Preview: Purpose:
Traditional patient outcome analyses relied heavily on conventional statistical models that primarily elucidate correlation rather than causal relationships. In this study, we aim to ident...
Authors: Sijuan Huang, Yongbao Li
Affiliation: Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, 510060, China, Sun-Yat sen University Cancer Center
Abstract Preview: Purpose: Hematologic toxicity (HT) is one of the most prevalent treatment-related toxicities experienced by locally advanced cervical cancer (LACC) patients receiving radiotherapy (RT). This study aim...
Authors: Katelyn M. Atkins, Indrin J. Chetty, Elizabeth M. McKenzie, Taman Upadhaya, Samuel C. Zhang
Affiliation: Department of Radiation Oncology,Cedars-Sinai Medical Center, Cedars-Sinai Medical Center
Abstract Preview: Purpose:
We explored a multi-regional and multi-omics approach to extract CT-based radiomics and 3D dosiomics features to predict radiation pneumonitis (RP) in patients with locally advanced Non-Sm...
Authors: Chuan He, Anh H. Le, Iris Z. Wang
Affiliation: Roswell Park Comprehensive Cancer Center, Cedars-Sinai
Abstract Preview: Purpose: To develop a non-measured and DVH-based (NMDB) IMRT QA framework integrating machine learning (ML) to classify lung SBRT VMAT plans prone to delivery errors
Methods: 560 Eclipse AcurosXB l...
Authors: Leigh A. Conroy, Thomas G Purdie, Christy Wong
Affiliation: Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre
Abstract Preview: Purpose: To develop a novel machine learning (ML) algorithm to evaluate and rank breast radiation therapy (RT) treatment plans based on treatment complexity for prioritization in multidisciplinary pee...
Authors: Rodrigo Delgadillo, Nesrin Dogan, Benjamin J. Rich, Stuart E Samuels, Levent Sensoy
Affiliation: University of Miami Sylvester Comprehensive Cancer Center
Abstract Preview: Purpose: Daily Cone beam CT (CBCT) images may be useful in detecting early morphological changes during head and neck cancer radiotherapy. The aim of this study was to evaluate the performance of CBCT...
Authors: David J. Carlson, Ming Chao, Tian Liu, Yong Hum Na, Kenneth E Rosenzweig, Robert Samstein, Lewis Tomalin
Affiliation: Icahn School of Medicine at Mount Sinai, Yale University School of Medicine, Department of Therapeutic Radiology, Yale University School of Medicine
Abstract Preview: Purpose: To investigate the potential of regional radiomic features extracted from five lung sub-lobes on pre-treatment CT as biomarkers for predicting radiation pneumonitis (RP) using machine learnin...
Authors: Ming Chao, Hao Guo, Tenzin Kunkyab, Yang Lei, Tian Liu, Kenneth Rosenzweig, Robert Samstein, James Tam, Junyi Xia, Jiahan Zhang
Affiliation: Icahn School of Medicine at Mount Sinai
Abstract Preview: Purpose:
The aim of the study is to develop a trade-off prediction model to efficiently guide the treatment planning process for patients with stage III non-small cell lung cancer (NSCLC).
Metho...
Authors: Lian Duan, Stephen F. Kry, Hunter S. Mehrens, Christine Peterson, Paige A. Taylor
Affiliation: The University of Texas MD Anderson Cancer Center, UT MD Anderson Cancer Center
Abstract Preview: Purpose: To develop predictive models for IROC SRS head phantom audits and to identify important factors influencing institutional performance.
Methods: The IROC SRS head phantom includes two TLDs ...
Authors: Theodore Higgins Arsenault, Kyle O'Carroll, Christian Erik Petersen, Alex T. Price, Meiying Xing
Affiliation: University Hospitals Seidman Cancer Center
Abstract Preview: Purpose: To assess the performance of various supervised learning models’ ability to predict binary classification of radiomic data for head and neck (H&N) cancer treatment outcomes.
Methods: Using...
Authors: Hania A. Al-Hallaq, Xuxin Chen, Anees H. Dhabaan, Elahheh (Ella) Salari, Xiaofeng Yang
Affiliation: Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University
Abstract Preview: Purpose:
Radiomics image analysis could lead to the development of predictive signatures and personalized radiotherapy treatments. However, variations in delineation are known to affect hand-crafte...
Authors: Ling Chen, Alexei V. Trofimov, Yi Wang, Dufan Wu
Affiliation: Massachusetts General Hospital, MGH
Abstract Preview: Purpose:
Selecting gaze angles of the eye is an important part of set-up of proton therapy for ocular tumors, ensuring that the treatment beam could irradiate the tumor while maximally sparing impo...
Authors: Daria Gaykalova, Ranee Mehra, Jason K Molitoris, Hajar Moradmand, Lei Ren, Amit Sawant, Phuoc Tran
Affiliation: University of Maryland School of Medicine, Maryland University Baltimore, University of Maryland, Department of Radiation Oncology, University of Maryland School of Medicine
Abstract Preview: Purpose: Radiomics extracts quantitative imaging biomarkers from medical images. However, maintaining the reproducibility and stability of selected features across institutions and parameter settings ...
Authors: Mark Ashamalla, Renee Farrell, Jinkoo Kim, Kartik Mani, Xin Qian, Samuel Ryu, Yizhou Zhao
Affiliation: Stony Brook Medicine, Stony Brook University Hospital
Abstract Preview: Purpose: Adaptive planning is increasingly used in head and neck radiation therapy due to factors like tumor response or changes in patient anatomy. However, methods such as resimulation or offline re...
Authors: George Agrotis, Marios Myronakis, Dimitrios Samaras, Kyriaki Theodorou, Ioannis Tsougos, Vassilios Tzortzis, Maria Vakalopoulou, Alexandros Vamvakas, Aikaterini Vassiou, Marianna Vlychou
Affiliation: Medical Physics Department, Medical School, University of Thessaly, Department of Radiology, University of Thessaly, Netherland Cancer Institute, Department of Urology, University of Thessaly, CentraleSupelec, University Paris-Saclay
Abstract Preview: Purpose: Prostate cancer (PCa) diagnosis remains challenging due to discrepancies in Gleason Scoring (GS) and risks of overdiagnosis and underdiagnosis. Multiparametric MRI (mpMRI), including Apparent...
Authors: Clint Bahler, Ruchika Reddy Chimmula, Harrison Louis Love, Oluwaseyi Oderinde, Courtney Yong
Affiliation: Purdue University, Department of Urology, Indiana University School of Medicine, Advanced Molecular Imaging in Radiotherapy (AdMIRe) Research Laboratory, School of Health Sciences, Purdue University
Abstract Preview: Purpose: Prostate cancer (PCa) is a common malignancy in men, and predicting biochemical recurrence (BCR) is crucial for guiding treatment decisions. Integrating multimodal data, including clinical, i...
Authors: Andres Portocarrero Bonifaz, Ian Schreiber
Affiliation: CARTI Cancer Center
Abstract Preview: Purpose: To explore how calculation grid resolution, along with other planning factors, affects head and neck dose calculation accuracy and contributes to potential discrepancies in the Eclipse Treatm...
Authors: Ryan Alden, Tithi Biswas, Kaushik Halder, Felix Maria-Joseph, Michael Mix, Rihan Podder, Tarun Kanti Podder
Affiliation: SUNY Upstate Medical University, IIT-Roorkee, University of Florida
Abstract Preview: Purpose: Radiomics feature-based model for predicting distant recurrence can potentially provide critical insight for clinical decision-making and assistance in treatment strategies. This study focuse...
Authors: Huang Chi-Shiuan, Wu Chih-Chun, Hui-Yu Cathy Tsai, Chen Yan-Han, Chen Yi-Wei, Pan Yi-Ying
Affiliation: Institute of Nuclear Engineering and Science, National Tsing Hua University, Taipei Veterans General Hospital, Tri-Service General Hospital
Abstract Preview: Purpose:
This study aims to develop and validate a machine learning (ML) model based on MRI-derived radiomic features to predict progressive disease (PD) in glioblastoma (GBM) patients four months ...
Authors: Waleed Mutlaq Almutairi, Ke Colin Huang, Vishwas Mukundan, Christopher F. Njeh, Oluwaseyi Oderinde, Yong Yue
Affiliation: Purdue University, Indiana University School of Medicine, Department of Radiation Oncology, Advanced Molecular Imaging in Radiotherapy (AdMIRe) Research Laboratory, Purdue University, West Lafayette, Indiana, USA
Abstract Preview: Purpose:
This study aimed to develop a machine learning (ML) model for early prediction of chemoradiotherapy (CRT) response in order to enhance personalized treatment selection for oral or orophary...
Authors: Ali Ajdari, Alice Bondi, Thomas R. Bortfeld, Gregory Buti, Xinru Chen, Zhongxing Liao, Antony John Lomax, Ting Xu
Affiliation: The University of Texas MD Anderson Cancer Center, Department Of Radiation Oncology, Massachusetts General Hospital (MGH), Massachusetts General Hospital & Harvard Medical School, Paul Scherrer Institut, ETH Zurich
Abstract Preview: Title: Addressing Imaging and Biomarker-driven Uncertainty in Machine Learning-based Radiotherapy Outcome Prediction
Alice Bondi, Gregory Buti, Antony Lomax, Thomas Bortfeld, Xinru Chen, Ting Xu, Z...
Authors: Laurence Edward Court, Alexandra Olivia Leone, Zhongxing Liao, Saurabh Shashikumar Nair, Joshua S. Niedzielski, Ramon Maurilio Salazar, Ting Xu
Affiliation: The University of Texas MD Anderson Cancer Center, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center
Abstract Preview: Purpose: Radiation Pneumonitis (RP) predictive models often rely on clinical and DVH parameters, but multiomic features from CT imaging and 3D dose distributions from various regions could provide add...
Authors: Zayne Belal, Rachel Drummey, Clifton David Fuller, Stephen Y. Lai, Brigid A. McDonald, Setareh Sharafi, Sonja Stieb, Kareem Abdul Wahid
Affiliation: Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, Hospital of the University of Pennsylvania, Department of Radiology, Johns Hopkins University, KSA-KSB, Cantonal Hospital Aarau, College Of Osteopathic Medicine, NOVA Southeastern University, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center
Abstract Preview: Purpose:
Radiotherapy-induced dysphagia can significantly impair head and neck (H&N) cancer patients’ quality of life. Despite the dose-dependent relationship between radiotherapy and dysphagia, sw...
Authors: Qianxi Ni, Qionghui Zhou
Affiliation: The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University
Abstract Preview: Purpose:
This study aims to develop and evaluate interpretable machine learning models that use radiomic and dosimetric features to predict HT in advanced cervical cancer patients.
Methods:
R...
Authors: Zahra Bagherpour, Manijeh Beigi, Pedram Fadavi, Faraz Kalantari, Moghadaseh Khaleghibizaki, Hengameh Nazari, Mojtaba Safari, Sepideh Soltani
Affiliation: Department of Radiation Oncology, School of Medicine, Iran University of Medical Sciences, Department of Radiation Oncology, School of Medicine, Emory University and Winship Cancer Institute, Department of Radiation Oncology, Iran University of Medical Sciences, University of Arkansas for medical sciences, Department of Radiation physics, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
Abstract Preview: Purpose: This study aims to evaluate whether readily available mammographic and sonographic data, combined with machine learning (ML) models, can predict critical molecular factors (ER, PR, HER2) in b...
Authors: Lian Duan, Stephen F. Kry, Hunter S. Mehrens, Paige A. Taylor
Affiliation: The University of Texas MD Anderson Cancer Center, UT MD Anderson Cancer Center
Abstract Preview: Purpose: To develop a machine learning model for predicting dose delivery accuracy and identifying its key factors in IROC’s proton phantom program.
Methods: IROC’s proton QA program has six proton...
Authors: Yukio Fujita, Syoma Ide, Kei Ito, Tomohiro Kajikawa, Satoshi Kito, Keiko Murofushi, Yujiro Nakajima, Yuhi Suda, Kentaro Taguchi, Naoki Tohyama, Fumiya Tsurumaki
Affiliation: Komazawa University Graduate School, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Department of Radiology, Kyoto Prefectural University of Medicine
Abstract Preview: Purpose: Stereotactic body radiotherapy (SBRT) for spine metastases is more effective for pain relief and local control than conventional radiotherapy. However, it is associated with vertebral compres...
Authors: Rituparna Basak, Maede Boroji, Renee F Cattell, Vahid Danesh, Imin Kao, Kartik Mani, Xin Qian, Samuel Ryu, Tiezhi Zhang
Affiliation: Stony Brook Medicine, Stony Brook University, Washington University in St. Louis, Stony Brook University Hospital
Abstract Preview: Purpose: Fundamental qualitative characteristics physicians use to differentiate skin lesion subtypes include asymmetry, border irregularity, and color. Radiomic features have potential to quantify th...
Authors: Issam M. El Naqa, Kurukulasuriya Ruwani Fernando, Himani Himani, Vivek Kumar, Arun Oinam, Manju Sharma
Affiliation: Panjab University, Moffitt Cancer Center, H. Lee Moffitt Cancer Center, Post Graduate Institute of Medical Sciences, University of California San Francisco
Abstract Preview: Purpose: To investigate the utility of Magnetic Resonance Imaging (MRI)-based radiomics for predicting tumor response and adverse effects, specifically gastrointestinal (GI) toxicity, in cervical canc...
Authors: Ibtisam Almajnooni, Siyong Kim, Nathaniel Miller, Elisabeth Weiss, Lulin Yuan
Affiliation: Virginia Commonwealth University
Abstract Preview: Purpose: Radiation-induced esophagitis (RE) is a common concern in lung cancer IMRT. Recent studies have indicated that the risk of radiation side effects varies greatly with patients’ baseline clinic...
Authors: Matthew C Abramowitz, Alan Dal Pra, Rodrigo Delgadillo, Nesrin Dogan, John C. Ford, Kyle R. Padgett, Levent Sensoy, Benjamin Spieler, Matthew T. Studenski, Jace Allen Walker
Affiliation: University of Miami, Department of Radiation Oncology, University of Miami, University of Miami Sylvester Comprehensive Cancer Center, University of Miami School of Medicine
Abstract Preview: Purpose:
Toxicities that affect a patient’s quality-of-life due to prostate cancer (pCa) radiation therapy (RT) are receiving more attention as RT has become increasingly successful in treating pCA...