Search Submissions 🔎

Results for "resting state": 39 found

A Conditional Point Cloud Diffusion Model for Deformable Liver Motion Tracking Via a Single Arbitrarily-Angled X-Ray Projection (PCD-Liver)

Authors: Yunxiang Li, Hua-Chieh Shao, Chenyang Shen, Jing Wang, Jiacheng Xie, Shunyu Yan, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, The University of Texas at Dallas

Abstract Preview: Purpose: Accurate liver deformable motion tracking is essential in image-guided radiotherapy to enable precise tumor targeting during treatment. We developed a conditional point cloud diffusion model ...

A Hybrid Population-Based and Patient-Specific Framework for 2D–3D Deformable Registration-Driven Limited-Angle Cone-Beam CT Estimation

Authors: Xiaoxue Qian, Hua-Chieh Shao, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Limited-angle CBCT (LA-CBCT) reduces imaging time and dose but suffers from under-sampling artifacts. 2D–3D deformable registration addresses this problem by estimating LA-CBCTs from defor...

A Single-View-Based Electroacoustic Tomography Imaging Using Deep Learning for Electroporation Monitoring

Authors: Yankun Lang, Lei Ren, Leshan Sun, Liangzhong Xiang, Yifei Xu, Jie Zhang

Affiliation: University of Maryland School of Medicine, University of California, Irvine

Abstract Preview: Purpose: To achieve the full-view image from a single-view sinogram using a two-stage deep learning model for electroacoustic-tomography (EAT), which is an emerging imaging technique with significant ...

A Tumor Tracking Method in Surface-Guided Radiotherapy

Authors: Penghao Gao, Zejun Jiang

Affiliation: Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Artificial Intelligence Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences

Abstract Preview: Purpose: Real-time tumor tracking can effectively compensate for the impact of respiratory motion on dose distribution. We propose a patient-specific external-internal correlation model driven by opti...

A Window-Level Based Approach for Generating Missing Tissue in CT Scans Using a Transformer-Gan Model

Authors: Mojtaba Behzadipour, Siyong Kim, Mitchell Polizzi, Richard R. Wargo, Lulin Yuan

Affiliation: VCU Health - Department of Radiology, Virginia Commonwealth University

Abstract Preview: Purpose:
The purpose of this study is to develop a method for generating missing tissue in CT scans of patients with large body sizes, where the field of view (FOV) of the scanner fails to capture ...

AI-Driven Quality Assurance for Gamma Camera/SPECT Anomaly Detection Using Contrastive Learning

Authors: Shanli Ding, Osama R. Mawlawi, Tinsu Pan

Affiliation: UT MD Anderson Cancer Center

Abstract Preview: Purpose:
Reliable detection of anomalies in Gamma Camera/SPECT flood images is vital for quality assurance (QA). Traditional methods relying on numerical thresholds and manual inspections often mis...

Advancing Post-Radiotherapy Toxicity Extraction: A Novel Privacy-Preserving, Parameter-Efficient Language Model Fine-Tuning

Authors: Hassan Bagher-Ebadian, Indrin J. Chetty, Mohamed Elshaikh, Ahmed I Ghanem, Mohammad M. Ghassemi, Reza Khanmohammadi, Benjamin Movsas, Shayan Siddiqui, Kundan S Thind, Jawad Turfa

Affiliation: Michigan State University, Department of Radiation Oncology,Cedars-Sinai Medical Center, Department of Radiation Oncology, Henry Ford Health-Cancer, Detroit, MI and Alexandria Department of Clinical Oncology, Faculty of Medicine, Alexandria University, Henry Ford Health

Abstract Preview: Purpose: Extracting late radiotherapy-induced toxicities from free-text notes using natural language processing is complicated by negative symptom identification, computational demands, and data priva...

Adversarial Diffusion-Based Self-Supervised Learning for High-Resolution MR Imaging

Authors: Zachary Buchwald, Chih-Wei Chang, Zach Eidex, Richard L.J. Qiu, Mojtaba Safari, Shansong Wang, Xiaofeng Yang, David Yu

Affiliation: Emory University and Winship Cancer Institute, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: MRI offers excellent soft tissue contrast for diagnosis and treatment but suffers from long acquisition times, causing patient discomfort and motion artifacts. To accelerate MRI, supervised d...

Advocating for Survival Prediction Models in Risk Stratification for Cancer Treatment Outcomes

Authors: Meixu Chen, Jing Wang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center

Abstract Preview: Purpose: Cancer treatment outcome prediction plays a pivotal role in guiding therapeutic decisions and optimizing patient care. Traditionally, binary prediction models have been widely used for risk s...

An Efficient Deep Learning Model with Multi-Scale Integration for Automated Pancreas Segmentation on MR Images

Authors: Jingyun Chen, Yading Yuan

Affiliation: Columbia University Irving Medical Center, Department of Radiation Oncology

Abstract Preview: Purpose: To develop and evaluate the Scale-attention network (SANet) for automated pancreas segmentation on MR images.
Methods: To develop SANet, we extended the classic U-Net design with a dynamic...

Assessment of Viscoelastic Changes in Ex Vivo Liver Tissue Using Pulsed Magnetomotive Ultrasound during Magnetic Hyperthermia

Authors: David Alejandro Collazos Burbano, Antonio Adilton Oliveira Carneiro, Paul L. Carson, Jose Eduardo Freire, Theo Zeferino Pavan, Joao Henrique Uliana, Nicholas Zufelato

Affiliation: University of São Paulo, University of Michigan, University of Sao Paulo

Abstract Preview: Purpose: Develop a theranostic platform that integrates magnetic hyperthermia (MH), ultrasound, and magnetic nanoparticles (MNPs) to improve diagnosis, treatment, and monitoring of hyperthermia proced...

Automated Full-Body Tumor Segmentation from PET/CT Images

Authors: Austin Castelo, Xinru Chen, Caroline Chung, Laurence Edward Court, Jaganathan A Parameshwaran, Zhan Xu, Jinzhong Yang, Yao Zhao

Affiliation: The University of Texas MD Anderson Cancer Center, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center

Abstract Preview: Purpose:
To develop a deep learning-based segmentation model to automatically delineate tumors from full-body PET/CT images.
Methods:
PET/CT image pairs of 91 patients were collected for this...

BEST IN PHYSICS IMAGING: Cross-Contrast Diffusion: A Synergistic Approach for Simultaneous Multi-Contrast MRI Super-Resolution

Authors: Yifei Hao, Wenxuan Li, Xiang Li, Tao Peng, Yulu Wu, Fang-Fang Yin, Yue Yuan, Lei Zhang, Yaogong Zhang

Affiliation: Duke University, School of Future Science and Engineering, Soochow University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Diffusion-based deep-learning frameworks have been recently used in MRI resolution enhancement, or super-resolution. Multi-contrast MRI share common anatomical structures while holding comple...

Box-Prompt Zero-Shot Smart Segmentation in Radiation Oncology Using a SAM-Based Model: Smartsam

Authors: Kristen A. Duke, Samer Jabor, Neil A. Kirby, Parker New, Niko Papanikolaou, Arkajyoti Roy, Yuqing Xia

Affiliation: St. Mary's University, The University of Texas San Antonio, UT Health San Antonio

Abstract Preview: Purpose:
The Segment Anything Model (SAM) is a foundational box-prompt-based model for natural image segmentation. However, its applicability to zero-shot 3D medical image segmentation, particularl...

Breathing New Life into Pulmonary Imaging: Development and Clinical Validation of an X-Ray Interferometry System

Authors: Rachael Blair, Les Butler, Lillian Dickson, Kyungmin Ham, Charles Hartman, Kenneth (Kip) Matthews, Corinne Vanya

Affiliation: Louisiana State University, University of Minnesota, Refined Imaging LLC, Center for Advanced Microstructures and Devices

Abstract Preview: Purpose:
To develop and evaluate an x-ray interferometry system (XIS) for low-dose, high-sensitivity diagnostic imaging of lung diseases such as chronic obstructive pulmonary disease (COPD), asthma...

Clinical I-131 Dosimetry: Audit, Review, and Evaluation

Authors: Colin Adam Doyle, Celeste Winters

Affiliation: Department of Diagnostic Radiology, Oregon Health & Science University, School of Medicine, Oregon Health & Science University

Abstract Preview: Purpose: To audit our radioactive iodine (I-131) dosimetry protocol, review dosimetry methods used at other facilities, investigate the clinical impact of I-131 dosimetry at our facility, and test the...

Comprehensive Evaluation of Federated Learning Strategies for Head and Neck Tumor Segmentation on PET/CT Images

Authors: Jingyun Chen, Yading Yuan

Affiliation: Columbia University Irving Medical Center, Department of Radiation Oncology

Abstract Preview: Purpose: To evaluate centralized and decentralized strategies for federated head and neck tumor segmentation on PET/CT.
Methods: We utilized training data from the HEad and neCK TumOR segmentation ...

Cross-Slice Attention for Unsupervised 3D Pelvic CBCT to CT Translation

Authors: Xu Chen, Jun Lian, Yunkui Pang, Pew-Thian Yap

Affiliation: University of North Carolina at Chapel Hill, Huaqiao University

Abstract Preview: Purpose: Unsupervised CBCT-to-CT translation in the pelvic region is essential for accurate radiotherapy delivery and adaptive image-guided interventions. However, current models for cross-modality tr...

Demographic Attributes of the Train-Test Sets and Their Impact on AI Performance: Medical Imaging Applications

Authors: Maryellen L. Giger, Fahd Hatoum, Robert Tomek, Heather M. Whitney

Affiliation: The University of Chicago

Abstract Preview: Purpose: To assess the importance of applying stratified sampling across demographic attributes (including age, sex, race, and ethnicity) when constructing training and testing datasets for ML-based d...

Design and Testing of a 3D-Winston-Lutz Phantom to Quantify Isocentricity of Pencil Beam Scanning Proton Therapy Machines

Authors: Imad M. Ali, Nesreen Alsbou, Baraa Kalani

Affiliation: Oklahoma State University, University of Central Oklahoma, University of Oklahoma Health Sciences Center

Abstract Preview: Purpose: To develop a three-dimensional Winston-Lutz phantom to quantify the isocentricity of the gantry, couch, and on-board imager of the MEVION-S250i proton therapy machine.
Methods: A 3D-scinti...

Development and Validation of Novel Two-Stage Vascular Segmentation Model for Interventional Angiography

Authors: Abid Khan, Chad Klochko, Michael J Kovalchick, Hyeok Jun Lee, Hani Nasr, Krishnan Shyamkumar, Kundan S Thind

Affiliation: Henry Ford Radiology, Wayne State University, Henry Ford Health, HFHS

Abstract Preview: Purpose: Automated vascular segmentation in interventional angiography is challenged by contrast kinetics, vessel variations, and 2D projections, limiting the effectiveness of single-model approaches....

Development of a Brain-like Digital Reference Object of Resting-State Functional MRI

Authors: Henry Szu-Meng Chen, Mu-Lan Jen, Vinodh A. Kumar, Ho-Ling Anthony Liu, Jian Ming Teo

Affiliation: School of Medicine, University of Colorado Denver, Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center

Abstract Preview: Purpose: Resting-state (rs-) fMRI detects functional networks by measuring synchronization of low-frequency oscillations in blood-oxygenation-level-dependent (BOLD) signals between brain regions. Stan...

Dosimetric Characterization of Spatial Fractionation Collimator for Ultra-High Dose Rate Electron Beam

Authors: Lily Jo Bertemes, Careesa Billante, Ashley Cetnar, Arnab Chakravarti, Nilendu Gupta, Sagarika Jain, Maximilian Stephen Meineke, Allison N. Palmiero, Runhe Tan

Affiliation: The Ohio State University - James Cancer Hospital, Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center, The Ohio State University, The James Cancer Center

Abstract Preview: Purpose: Ultra-High Dose Rate Radiation Therapy (UHDR-RT) induces normal tissue sparing while maintaining iso-effective tumor control compared to conventional methods, known as the “FLASH effect”. How...

Efficient Denoising of Low-Statistic Influence Matrices Using a Diffusion Transformer-Based Framework for Adaptive Proton Therapy

Authors: Yuzhen Ding, Hongying Feng, Jason Michael Holmes, Baoxin Li, Wei Liu, Daniel Ma, Lisa McGee, Samir H. Patel, Jean Claude M. Rwigema, Sujay A. Vora

Affiliation: Arizona State University, Department of Radiation Oncology, Mayo Clinic, Mayo Clinic Arizona, Mayo Clinic

Abstract Preview: Purpose:
Intensity-modulated proton therapy (IMPT) is a preferred treatment modality for head and neck (H&N) cancer patients, offering precise tumor targeting while sparing surrounding organs at ri...

Evaluating Deep Learning Models for Accurate Segmentation of GTV and Oars in MR-Guided Adaptive Radiotherapy for Pancreatic Cancer

Authors: Christopher G. Ainsley, Pradeep Bhetwal, Yingxuan Chen, Wookjin Choi, Vimal K. Desai, Karen E. Mooney, Adam Mueller, Hamidreza Nourzadeh, Yevgeniy Vinogradskiy, Maria Werner-Wasik

Affiliation: Thomas Jefferson University

Abstract Preview: Purpose: MR-guided adaptive radiotherapy (MRgART) has demonstrated improved outcomes for patients with pancreatic cancer. However, the time-consuming re-segmentation of targets and organs-at-risk (OAR...

Follow-the-Leader Framework for Adaptable Target Segmentation in Radiotherapy

Authors: Mingli Chen, Xuejun Gu, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose: This study introduces a novel template-guided deep learning framework for primary gross tumor volume (GTVp) segmentation, addressing challenges posed by diverse tumor types and enabling a uni...

Foresight Planning: Radiotherapy Plan Optimization Via Self-Supervised Model Predictive Control

Authors: Yang Sheng, Qingrong Jackie Wu, Qiuwen Wu, Xin Wu, Dongrong Yang

Affiliation: Duke University Medical Center

Abstract Preview: Purpose:
Treatment planning for intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) relies on inverse planning, an iterative and non-intuitive process of adjust...

Impact of Transfer Learning on Estimation of Intravoxel Incoherent Motion Parameters in the Liver

Authors: Marissa Brown, Geoffrey D. Clarke, Luke Norton

Affiliation: University of Texas Health Science Center at San Antonio

Abstract Preview: Purpose: To evaluate how different learning strategies affect convolutional neural network (CNN) estimates of the liver's intravoxel incoherent motion (IVIM) parameters.
Methods: A 3-stage U-Net wa...

Implementation of an Innovative Digital Competency Record System

Authors: Benjamin J. Sintay, Caroline Vanderstraeten, David B. Wiant

Affiliation: Fuse Oncology, Cone Health

Abstract Preview: Purpose: The Joint Commission (JC) mandates that healthcare organizations establish and evaluate staff competencies to ensure safe and effective patient care. In the context of increasing sub-speciali...

Incorporating Physicians’ Contouring Style into Auto-Segmentation of Clinical Target Volume for Post-Operative Prostate Cancer Radiotherapy Using a Language Encoder

Authors: Steve B. Jiang, Chien-Yi Liao, Dan Nguyen, Daniel Yang, Hengrui Zhao

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Post-operative radiotherapy for prostate cancer requires precise contouring of the clinical target volume (CTV) to account for microscopic disease that is invisible in the image. However, ...

Innovative Deep Learning Network for Overall Survival Prediction for NSCLC: Outperforming Pre-Trained Models VGG16 and ResNet50

Authors: Ryan Alden, Tithi Biswas, Kaushik Halder, Felix Maria-Joseph, Michael Mix, Rihan Podder, Tarun Kanti Podder

Affiliation: SUNY Upstate Medical University, IIT-Roorkee, University of Florida

Abstract Preview: Purpose: Early-stage NSCLC patients undergoing SBRT often die due to intercurrent illnesses. However, prediction of overall survival (OS) remains crucial due to the risk of disease recurrence. This st...

Integrating Multiple Modalities with Pretrained Swin Foundation Model for Head and Neck Tumor Segmentation

Authors: Jue Jiang, Aneesh Rangnekar, Shiqin Tan, Harini Veeraraghavan

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Weill Cornell Graduate School of Medical Sciences

Abstract Preview: Purpose: Clinicians often use information from FDG-PET and CT to interpret and delineate gross tumor (GTVp) and nodal (GTVn) volumes for radiotherapy planning in head and neck (HN) cancer patients. He...

Neural Implicit K-Space for Accelerated Patient-Specific Non-Cartesian MRI Reconstruction

Authors: Daniel O Connor, Mary Feng, Hui Lin, Hengjie Liu, Xin Miao, Michael Ohliger, Jess E. Scholey, Ke Sheng, DI Xu, Wensha Yang, Yang Yang

Affiliation: UCSF, University of California, Los Angeles, Department of Radiation Oncology, University of California San Francisco, Department of Radiation Oncology, University of California, San Francisco, Department of Radiation Oncology, University of California at San Francisco, University of San Francisco, Department of Radiology, University of California, San Francisco, University of California San Francisco, Siemens Medical Solutions USA Inc.

Abstract Preview: Purpose: The scanning time for a fully sampled MRI is lengthy. Compressed sensing (CS) has been developed to minimize image artifacts in accelerated scans, but the required iterative reconstruction is...

New Insights into Automatic Treatment Planning for Cancer Radiotherapy Using Explainable Artificial Intelligence.

Authors: Md Mainul Abrar, Yujie Chi

Affiliation: University of Texas at Arlington, Department of Physics, University of Texas at Arlington

Abstract Preview: Purpose: Healthcare 5.0, proposed in 2021, includes interpretable healthcare analysis as a core component. Achieving this requires the application of explainable artificial intelligence (XAI) to overc...

Patient-Specific Coronary Artery Habitat Model for Enhanced Cardiac Sparing

Authors: Blessing Akinro, Soumyanil Banerjee, Ming Dong, Carri K. Glide-Hurst, Prashant Nagpal, Chase Ruff, Nicholas R. Summerfield, Timothy P. Szczykutowicz

Affiliation: Departments of Human Oncology and Medical Physics, University of Wisconsin-Madison, Departments of Radiology and Medical Physics, University Wisconsin-Madison, Department of Radiology, University of Wisconsin-Madison, Department of Computer Science, Wayne State University, Department of Human Oncology

Abstract Preview: Purpose: Radiation dose to coronary arteries (CAs) during thoracic radiotherapy (RT) is linked to cardiotoxicity. However, precise CA delineation for avoidance is limited by image quality and CA compl...

Physics and Geometry Input-Based Neural Network Dose Engine

Authors: Ricardo Garcia Santiago, Narges Miri, Daryl P. Nazareth, Ankit Pant, Mukund Seshadri

Affiliation: Roswell Park Comprehensive Cancer Center

Abstract Preview: Purpose: To develop a transformer-based deep learning network framework for predicting VMAT dose distributions. This can provide fast and efficient calculations with accuracies potentially comparable ...

Region-Specific Structure-Function Coupling Alterations in Parkinson’s Disease: Insights from Multi-Modal MRI

Authors: Yifei Hao, Ting Huang, Wenxuan Li, Xiang Li, Manju Liu, Rong Liu, Tao Peng, Yulu Wu, Fang-Fang Yin, Lei Zhang, Yaogong Zhang, Jiangtao Zhu

Affiliation: Duke University, Department of Radiology, The Second Affiliated Hospital of Soochow University, School of Future Science and Engineering, Soochow University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: This study investigates the alterations in structure-function coupling (SC-FC) networks in Parkinson’s disease (PD) patients, focusing on region-specific disruptions and compensatory mechanis...

Spatial Resolution Degradation in Weekly Computed Tomography Quality Control and Implications for X-Ray Tube Replacement

Authors: Hadley Anna DeBrosse, Kevin J. Little

Affiliation: The Ohio State University

Abstract Preview: Purpose: This work examines the consistency and pattern of spatial resolution degradation in weekly quality control (QC) testing prior to CT tube failure and replacement and investigates potential cor...

Spatially Informed Auto-Segmentation of Cardiac Nodes for Radiotherapy Treatment Planning

Authors: Ming Dong, Carri K. Glide-Hurst, Joshua Pan, Nicholas R. Summerfield

Affiliation: Department of Computer Science, Wayne State University, Departments of Human Oncology and Medical Physics, University of Wisconsin-Madison, Department of Human Oncology, University of Wisconsin-Madison

Abstract Preview: Purpose: Radiation dose to the cardiac nodes is more strongly associated with conduction disorders and arrythmias than whole heart (WH) metrics. However, node segmentation is challenging due to comple...