Search Submissions 🔎

Results for "segmentation net": 79 found

A Foundational Model for Medical Imaging Modality Translation in Head and Neck Radiotherapy

Authors: Jie Deng, Yunxiang Li, Xiao Liang, Weiguo Lu, Jiacheng Xie, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, University of Texas Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, The University of Texas at Dallas

Abstract Preview: Purpose: Recently, foundational models trained on large datasets have shown remarkable performance across various tasks. Developing a foundational model for medical image modality translation in head-...

A Method to Expedite Quality Assurance for Head and Neck Ctvs with Lymph Node Level Auto-Autocontouring and Identification

Authors: Beth M. Beadle, Adrian Celaya, Laurence Edward Court, David Fuentes, Anna Lee, Tze Yee Lim, Dragan Mirkovic, Amy Moreno, Raymond Mumme, Tucker J. Netherton, Callistus M. Nguyen, Jaganathan A Parameshwaran, Jack Phan, Carlos Sjogreen, Sara L. Thrower, Congjun Wang, He C. Wang, Xin Wang

Affiliation: Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Department of Radiation Oncology, Stanford University, The University of Texas MD Anderson Cancer Center, MD Anderson Cancer Center, MD Anderson, Rice University, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center

Abstract Preview: Purpose: Quality assurance of target volumes from radiotherapy clinical trials is a labor and resource intensive task. The purpose of this work is to quantify the accuracy of a tool that automatically...

A Practical Experimental Software Validation Method for Voxel-Based Personalised Dosimetry in Radiopharmaceutical Therapy

Authors: Thomas Gee, Sofia Michopoulou, Amit Nautiyal

Affiliation: University Hospital Southampton

Abstract Preview: Purpose: Dosimetry software that is accessible to departments offers new opportunities to improve patient-specific dosimetry. Prior to clinical decision-making, it is essential to validate dosimetry s...

Abdomen CT Multi-Organ Segmentation Using Multi-Granularity Feature Extraction

Authors: Zilei Fu, Yi Guo, Wanli Huo, Hongdong Liu, Laishui Lyu, Zhao Peng, Yaping Qi, Senting Wang

Affiliation: Department of Radiotherapy, cancer center, The First Affiliated Hospital of Fujian Medical University, the Zhejiang-New Zealand Joint Vision-Based Intelligent Metrology Laboratory, College of Information Engineering, China Jiliang University, Division of lonizing Radiation Metrology, National Institute of Metrology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, China Jiliang University, Department of Oncology, Xiangya Hospital, Central South University

Abstract Preview: Purpose: Medical image boundaries are commonly characterized by smooth gray-level transitions, resulting in pixel-level segmentation errors near these blurred boundaries. To address this, we developed...

Advancing Biodosimetry with AI: Detecting Dicentric Chromosomes Using Convolutional Neural Networks

Authors: Adayabalam Balajee, Elijah Berberette, Maria Escalona, Dray Gentry, Chester R. Ramsey, Terri Ryan

Affiliation: ORAU, Thompson Proton Center, University of Tennessee

Abstract Preview: Purpose:
Dicentric chromosomes, characterized by two centromeres on a single chromosome, are key biomarkers in biological dosimetry for quantifying ionizing radiation exposure. However, manual dete...

Advancing Cardiac Sparing with Upright Patient Geometry and Deep Learning

Authors: Shae Gans, Carri K. Glide-Hurst, Mark Pankuch, Chase Ruff, Niek Schreuder, Nicholas R. Summerfield, Yuhao Yan

Affiliation: Departments of Human Oncology and Medical Physics, University of Wisconsin-Madison, Northwestern Medicine Proton Center, Northwestern Medicine Chicago Proton Center, Leo Cancer Care

Abstract Preview: Purpose: Novel upright patient positioners coupled with diagnostic-quality vertical CT at treatment isocenter introduce a significant opportunity for improved image-guided particle therapy. Treating p...

An Advanced Automated Pipeline for Brain Tumor Segmentation on MRI Images in Gamma Knife Radiotherapy

Authors: Zachery Colbert, Matthew Foote, Michael Huo, Mark Pinkham, Prabhakar Ramachandran, Mihir Shanker

Affiliation: Radiation Oncology, Princess Alexandra Hospital, Ipswich Road, Princess Alexandra Hospital

Abstract Preview: Purpose: The study aimed to develop and implement deep learning-based autosegmentation models for the autosegmentation of four key tumor types: brain metastasis, pituitary adenoma, vestibular schwanno...

An Efficient Deep Learning Model with Multi-Scale Integration for Automated Pancreas Segmentation on MR Images

Authors: Jingyun Chen, Yading Yuan

Affiliation: Columbia University Irving Medical Center, Department of Radiation Oncology

Abstract Preview: Purpose: To develop and evaluate the Scale-attention network (SANet) for automated pancreas segmentation on MR images.
Methods: To develop SANet, we extended the classic U-Net design with a dynamic...

Assessing the Risks of Synthetic MRI Data in Deep Learning: A Study on U-Net Segmentation Accuracy

Authors: Chuangxin Chu, Haotian Huang, Tianhao Li, Jingyu Lu, Zhenyu Yang, Fang-Fang Yin, Tianyu Zeng, Chulong Zhang, Yujia Zheng

Affiliation: The Hong Kong Polytechnic University, Nanyang Technological University, Australian National University, Medical Physics Graduate Program, Duke Kunshan University, North China University of Technology, Duke Kunshan University

Abstract Preview: Purpose: Deep learning segmentation models, such as U-Net, rely on high-quality image-segmentation pairs for accurate predictions. However, the recent increasing use of generative networks for creatin...

Augmenting Histopathology Lymphocyte Detection with Gpt-4 in-Context Visual Reasoning

Authors: Kyle J. Lafata, Casey Y. Lee, Xiang Li, Megan K. Russ, Zion Sheng

Affiliation: Duke University, Department of Radiation Oncology, Duke University, Clinical Imaging Physics Group, Department of Radiology, Duke University Health System

Abstract Preview: Purpose:
Traditional deep learning-based cell segmentation models face limitations, such as the need for extensive training data and retraining when encountering new cell types or domains. This stu...

Automated Framework for Predicting Tumour Growth in Vestibular Schwannomas Using Contrast-Enhanced T1-Weighted MRI

Authors: Mehdi Amini, Minerva Becker, Simina Chiriac, Alexandre Cusin, Dimitrios Daskalou, Ghasem Hajianfar, Sophie Neveu, Marcella Pucci, Yazdan Salimi, Pascal Senn, Habib Zaidi

Affiliation: Geneva University Hospital, Division of Radiology, Diagnostic Department, Geneva University Hospitals, Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals

Abstract Preview: Purpose: Personalized prediction of vestibular schwannoma (VS) tumour growth is crucial for guiding patient management decisions toward observation versus intervention. This study proposes an automate...

Automated Full-Body Tumor Segmentation from PET/CT Images

Authors: Austin Castelo, Xinru Chen, Caroline Chung, Laurence Edward Court, Jaganathan A Parameshwaran, Zhan Xu, Jinzhong Yang, Yao Zhao

Affiliation: The University of Texas MD Anderson Cancer Center, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center

Abstract Preview: Purpose:
To develop a deep learning-based segmentation model to automatically delineate tumors from full-body PET/CT images.
Methods:
PET/CT image pairs of 91 patients were collected for this...

Automated IMPT Treatment Planning for CSI: Enhancing Efficiency with Auto-Segmentation and Scripting

Authors: Katja M. Langen, William Andrew LePain, Robert Muiruri, Vivi Nguyen, Mosa Pasha, Roelf L. Slopsema, Alexander Stanforth, Yinan Wang, Mingyao Zhu

Affiliation: Emory Healthcare, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Intensity modulated proton therapy (IMPT) treatment planning for craniospinal irradiation (CSI) is complex and requires extensive effort from the planner. This study aims to enhance planning ...

Automated MR Segmentation for Online Adaptive MR-Linac Therapy Using an in-House Model

Authors: David L. Barbee, David Byun, Matt Long, Jose R. Teruel Antolin, Michael J Zelefsky

Affiliation: NYU Langone Health

Abstract Preview: Purpose:
Online adaptive MR-Linac therapy requires contour adaptation, often adding 20 minutes to treatment time and reducing machine throughput. This study introduces a fully automated MR contour ...

Automated Multimodal Image Registration for Prostate Bed Radiation Treatment

Authors: Quan Chen, Xue Feng, Chunhui Han, Gaofeng Huang, Trevor Ketcherside, Yi Lao, Yun Rose Li, An Liu, Bo Liu, Kun Qing, William T. Watkins

Affiliation: Graduate Program in Bioengineering, University of California San Francisco-UC Berkeley, Department of Radiation Oncology, City of Hope National Medical Center, Mayo Clinic Arizona, Carina Medical LLC

Abstract Preview: Purpose: New treatment platforms such as Ethos (Varian Medical Systems) allow the introduction of multi-modal imaging into adaptive radiotherapy workflow to facilitate an up-to-date view of patients’ ...

Automated Treatment Planning Script for Bone Metastases Using Eclipse TPS

Authors: Maria Jose Almada, Bruno Forti, Andres Lima, Carlos Daniel Venencia

Affiliation: Instituto Zunino - Fundacion Marie Curie

Abstract Preview: Purpose:
To automate the planning of radiotherapy treatments for bone metastases using a script in the ECLIPSE planning system version 15.6 with a graphical interface.
Methods:
A script was d...

Automatic 4D Lung PET-CT Segmentation Using Hybrid Deep Neural Network

Authors: Hongyi Jiang, Fang-Fang Yin

Affiliation: Duke University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose:
Imaging moving tissues using PET-CT can be difficult. Separating signal into phases during construction reduces signal count and increases influence of noise. Algorithms that use signal fr...

Automatic Tumor Segmentation and Catheter Detection from MRI for Cervical Cancer Brachytherapy Using Uncertainty-Aware Dual Convolution-Transformer Unet

Authors: Majd Antaki, Rohini Bhatia, Gayoung Kim, Yosef Landman, Junghoon Lee, Akila N. Viswanathan

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Physics and Advanced Development Elekta

Abstract Preview: Purpose: Brachytherapy is a standard radiation therapy approach for cervical cancer, which directly delivers radiation source to the tumor using catheters. Treatment planning requires identification o...

Automating Radiographic Sharp Score Prediction in Rheumatoid Arthritis Using Multistage Deep Learning Methods

Authors: Hajar Moradmand, Lei Ren

Affiliation: University of Maryland School of Medicine, University of Maryland

Abstract Preview: Purpose:
The Sharp-van der Heijde (SvH) score is essential for assessing joint damage in rheumatoid arthritis (RA) from radiographic images. However, manual scoring is time-intensive and prone to v...

BEST IN PHYSICS THERAPY: Population-Based Automated Organs-at-Risk Contouring Outlier Detection and Visualization without Requiring Patient-Specific Reference Contour

Authors: Rex A. Cardan, Carlos E. Cardenas, Quan Chen, Jingwei Duan, Joseph Harms, Joel A. Pogue, Richard A. Popple, Yi Rong, Dennis N. Stanley, Natalie N. Viscariello, Libing Zhu

Affiliation: Washington University in St. Louis, The University of Alabama at Birmingham, Mayo Clinic Arizona, University of Alabama at Birmingham

Abstract Preview: Purpose: Manual verification of organs-at-risk(OARs) delineations is a critical yet time-intensive process, often susceptible to unintentional oversights. To assist the reviewing process, a population...

Biomechanically Informed Diagnostic-to-Synthetic CT Transformation for Expedited Radiation Therapy Planning

Authors: Liyuan Chen, Steve Jiang, Chenyang Shen

Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center

Abstract Preview: Purpose: Delays in radiation therapy (RT) initiation caused by conventional CT simulation processes can hinder timely treatment delivery and patient outcomes. This study proposes a Virtual Treatment S...

Box-Prompt Zero-Shot Smart Segmentation in Radiation Oncology Using a SAM-Based Model: Smartsam

Authors: Kristen A. Duke, Samer Jabor, Neil A. Kirby, Parker New, Niko Papanikolaou, Arkajyoti Roy, Yuqing Xia

Affiliation: St. Mary's University, The University of Texas San Antonio, UT Health San Antonio

Abstract Preview: Purpose:
The Segment Anything Model (SAM) is a foundational box-prompt-based model for natural image segmentation. However, its applicability to zero-shot 3D medical image segmentation, particularl...

Brain Vessel Segmentation and Tracking in Longitudinal Glioblastoma MRI Scans

Authors: Evan Calabrese, Edward Robert Criscuolo, Deshan Yang

Affiliation: Duke University, Department of Radiation Oncology, Duke University

Abstract Preview: Purpose: Glioblastoma (GBM) is the most common and aggressive form of brain cancer. Deformable image registration (DIR) is a powerful tool to compute anatomical changes in longitudinal MRI scans, whic...

Can We Use Smaller Margin for the Planned Target Volume with Adaptive Radiotherapy?

Authors: Mahmoud H Abdelgawad, Shahabeddin mostafanazhad Aslmarand, Lili Chen, Xiaoming Chen, Ahmed A. Eldib, Teh Lin, Chang Ming Charlie Ma, Robert A. Price

Affiliation: Physics department, Faculty of science, Al-Azhar University, Fox Chase Cancer Center

Abstract Preview: Purpose: Many modern radiotherapy clinics are moving to online adaptive radiotherapy. A recent upgrade of the CBCT-based adaptive radiotherapy system introduced ultra-high-speed image acquisition. Thi...

Clinical Implementation of Automated Contour Quality Assurance in Head and Neck Radiotherapy

Authors: Sam Armstrong, Jamison Louis Brooks, Nicole Johnson, Douglas John Moseley, Cassie Sonnicksen, Erik J. Tryggestad

Affiliation: Mayo Clinic

Abstract Preview: Purpose: To evaluate the feasibility of a shallow learning-based quality assurance (QA) tool designed to assist human reviewers in assessing organ-at-risk (OAR) contours for head and neck radiotherapy...

Clinical Validation of AI-Driven Segmentation Model for Pediatric Craniospinal Irradiation: Marked Reduction in Contouring Time and Enhanced Workflow Efficiency

Authors: Alexander Choi, William Ross Green, Christine Hill-Kayser, Gary D. Kao, Michael LaRiviere, Rafe A. McBeth, Steven Philbrook

Affiliation: Department of Radiation Oncology, University of Pennsylvania

Abstract Preview: Purpose: To validate the potential of clinical deployment of an in-house AI-driven auto-segmentation tool for pediatric craniospinal irradiation (CSI) in proton therapy, with goals of reducing manual ...

Clinical Validation of a Deep-Learning Segmentation Tool for Head and Neck Cancer Patients and Thoracic and Abdominal Cancer Patients

Authors: Haijian Chen, Katja M. Langen, William Andrew LePain, Claire Tran, Mingyao Zhu

Affiliation: Emory Healthcare, Emory University, Georgia Institute of Technology

Abstract Preview: Purpose: To validate the performance of a commercial deep-learning segmentation (DLS) tool for head and neck cancer (HNC) and thoracic and abdominal cancer (TAC) by comparing it to manual segmentation...

Comparison of AI-Based and Ants for Longitudinal Deformable Image Registration in Head and Neck Cancer

Authors: Aditya P. Apte, Joseph O. Deasy, Jue Jiang, Nancy Lee, Sudharsan Madhavan, Nishant Nadkarni, Lopamudra Nayak, Harini Veeraraghavan, Wei Zhao

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: To track early response to radiotherapy using digital twins, it is crucial to quantify tumor volume and mass changes. Traditional tumor detection methods, particularly in image registration, ...

Comprehensive Evaluation of Federated Learning Strategies for Head and Neck Tumor Segmentation on PET/CT Images

Authors: Jingyun Chen, Yading Yuan

Affiliation: Columbia University Irving Medical Center, Department of Radiation Oncology

Abstract Preview: Purpose: To evaluate centralized and decentralized strategies for federated head and neck tumor segmentation on PET/CT.
Methods: We utilized training data from the HEad and neCK TumOR segmentation ...

Contrastive Learning and Hybrid CNN-Transformer Model for Unpaired MR Image Synthesis in Acute Cerebral Infarction

Authors: Kota Hirose, Daisuke Kawahara, Jokichi Kawazoe, Yuji Murakami

Affiliation: Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima University

Abstract Preview: Purpose: Synthesizing medical images can address the lack of or unscanned medical images, reducing scanner time and costs. However, paired image scarcity remains a challenge for image synthesis. We pr...

Cycle-Consistent Multi-Task Automated Segmentation and Synthetic CT Generation Model for Adaptive Proton Therapy

Authors: Derek Tang, Susu Yan

Affiliation: Massachusetts General Hospital

Abstract Preview: Purpose: To evaluate the performance of a multi-task automated-segmentation and synthetic CT generation model (sCT) and investigate its application in an adaptive proton therapy workflow.
Methods: ...

Deep Learning Based Automatic Cerebrovascular Segmentation in Multi-Center TOF-MRA Datasets

Authors: Gayoung Kim, Junghoon Lee

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University

Abstract Preview: Purpose: 3D time-of-flight magnetic resonance angiography (TOF-MRA) is widely used for visualizing cerebrovascular structures. Accurate segmentation of cerebrovascular structures is critical for relia...

Deep Learning-Based Auto Segmentation of Oars in Head and Neck Radiation Therapy

Authors: Laila A Gharzai, Bharat B Mittal, Poonam Yadav

Affiliation: Northwestern Feinberg School of Medicine, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Northwestern University Feinberg School of Medicine

Abstract Preview: Purpose: Multiple studies have shown the increasing role of deep learning in segmenting regions of interest. This work presents the feasibility of auto-segmenting the critical structures for head and ...

Deep Learning-Based Auto-Segmentation in Cervical High-Dose-Rate Brachytherapy with Clinical Considerations

Authors: Benjamin Haibe-Kains, Ruiyan Ni, Alexandra Rink

Affiliation: Department of Medical Biophysics, University of Toronto, University Health Network

Abstract Preview: Purpose: Accurate auto-segmentation for targets and organs-at-risk (OARs) using deep learning reduces the delineating time in radiotherapy. In high-dose-rate brachytherapy, specific clinical criteria ...

Deep Learning-Based Segmentation Using Cine Epid Images for Real-Time Tumor Monitoring

Authors: Fumiaki Komatsu, Shunsuke Moriya, Ryosuke Nakamura, Takeji Sakae, Toshiyuki Terunuma, Tetsuya Tomita

Affiliation: Graduate School of Comprehensive Human Sciences, University of Tsukuba, Institute of Medicine, University of Tsukuba, Proton Medical Research Center, University of Tsukuba, Department of Radiology, University of Tsukuba Hospital

Abstract Preview: Purpose: To develop a deep learning (DL) model capable of accurately tracking lung tumors independent of beam angle variations.
Methods: A thoracic dynamic phantom simulating lung motion in the sup...

Deep Learning-Based Ventricular Auto-Segmentation for Dosimetric Analysis in Intraventricular Tumor SRS

Authors: John Byun, Juan J Cardona, Steven D Chang, Cynthia Fu-Yu Chuang, Xuejun Gu, Yusuke Hori, Hao Jiang, Fred Lam, Lianli Liu, Weiguo Lu, David Park, Erqi Pollom, Elham Rahimy, Deyaaldeen Abu Reesh, Scott Soltys, Gregory Szalkowski, Lei Wang

Affiliation: Department of Radiation Oncology, Stanford University, Department of Neurosurgery, Stanford School of Medicine, Department of Neurosurgery, Stanford University, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose:
Intraventricular tumors pose significant challenges in neurosurgery due to their complex location. Therefore, brain SRS could be a better treatment option. At our institution, some patient...

Deep Learning-Driven Comparative Analysis of CNN-Based Architectures and High-Order Vision Mamba U-Net (H-vMUNet) for MRI-Based Brain Tumor Segmentation

Authors: Sang Hee Ahn, Nalee Kim, Do Hoon Lim

Affiliation: Samsung Medical Center, Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine

Abstract Preview: Purpose: MRI offers superior soft-tissue contrast, aiding tumor localization and segmentation in radiation therapy, which traditionally relies on oncologists' expertise. This study compares CNN-based ...

Design and Construction of a Geometrical and Head Phantom with Internal Carotid Inserts for Flow Simulation in Image-Derived Input Function with 3T and 7T MR-Brainpet Insert Studies.

Authors: Dirk Grunwald, Hans Herzog, Hidehiro Iida, N. Jon Shah, Usman Khalid, Manfred Lennartz, Philipp Lohmann, Ceren Memis, Tobias Meurer, Claudia Regio Brambilla, Jürgen Scheins, Lutz Tellmann, Christoph W. Lerche, Martin Wiesmann, Karl Ziemons

Affiliation: FH Aachen University of Applied Sciences, Department of Chemistry and Biotechnology, Clinic for Diagnostic and Interventional Neuroradiology, Uniklinik Aachen,, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH,, Central Institute for Engineering, Electronics and Analytics (ZEA-1), Forschungszentrum, Turku PET Center, Institute of Biomedicine, Faculty of Medicine, University of Turku,

Abstract Preview: Purpose: Quantitative brain studies with positron emission tomography (PET) often require an arterial input function (AIF), which traditionally requires arterial cannulation. However, this is invasive...

Developing a Comprehensive Multi-Modal Framework for Population-Scale Liver Volumetry: Insights and Predictive Models

Authors: Mustafa Bashir, Diana Kadi, Kyle J. Lafata, Jacob A. Macdonald, Mark Martin, Yuqi Wang, Marilyn Yamamoto

Affiliation: Duke University, Department of Radiation Oncology, Duke University, Department of Electrical and Computer Engineering, Duke University, Department of Radiology, Duke Unversity

Abstract Preview: Purpose: To develop a high-throughput, automated-data-interrogation pipeline for integrating imaging and clinical information to identify key determinants of liver volume (LV), enabling population-sca...

Development and Validation of Novel Two-Stage Vascular Segmentation Model for Interventional Angiography

Authors: Abid Khan, Chad Klochko, Michael J Kovalchick, Hyeok Jun Lee, Hani Nasr, Krishnan Shyamkumar, Kundan S Thind

Affiliation: Henry Ford Radiology, Wayne State University, Henry Ford Health, HFHS

Abstract Preview: Purpose: Automated vascular segmentation in interventional angiography is challenged by contrast kinetics, vessel variations, and 2D projections, limiting the effectiveness of single-model approaches....

Development and Validation of a Deep Learning-Based Auto-Segmentation Module for Vestibular Schwannoma

Authors: John Byun, Steven D Chang, Cynthia Fu-Yu Chuang, Xuejun Gu, Melanie Hayden Gephart, Yusuke Hori, Fred Lam, Gordon Li, Lianli Liu, Weiguo Lu, David Park, Erqi Pollom, Elham Rahimy, Deyaaldeen Abu Reesh, Scott Soltys, Gregory Szalkowski, Lei Wang, Xianghua Ye, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Department of Neurosurgery, Stanford University, Department of Radiation Oncology, Stanford University, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose: Accurate and automated delineation of vestibular schwannoma (VS) volume is crucial for disease management, as both treatment approaches (stereotactic radiosurgery and invasive surgery) and mo...

Dosimetric Impact of Auto-Segmentation with Replanning: An Analysis of a Prospective Clinical Trial

Authors: Kathryn J. Dess, Martha M. Matuszak, Dan Polan

Affiliation: University of Michigan

Abstract Preview: Purpose: A recent survey demonstrated 18 of 20 top academic institutions have implemented auto-segmentation. Studies to date have focused on geometric contour changes and dosimetric differences using ...

Enhancing Adaptive Radiotherapy Segmentation with a 3D Unet Framework and Prior Fraction Information

Authors: Jennifer L. Dolan, Chengyin Li, Parag Parikh, Doris N. Rusu, Kundan S Thind

Affiliation: Henry Ford Health, Cedars-Sinai Medical Center

Abstract Preview: Purpose: The time and resource demands of online Adaptive Radiation Therapy (ART) can limit its widespread clinical adoption and potentially impact patient throughput. To address this, we developed a ...

Enhancing CNN-Based Brain Metastasis Detection in MRI By Integrating Locoregional 3D Deformation Technique

Authors: Minbin Chen, Ke Lu, Kaizhong Shi, Chunhao Wang, Chuan Wu, Zhenyu Yang, Fang-Fang Yin, Jingtong Zhao

Affiliation: The First People's Hospital of Kunshan, Duke University, Medical Physics Graduate Program, Duke Kunshan University, Duke Kunshan University, Department of Radiation Oncology, Duke Kunshan University

Abstract Preview: Purpose: MRI-based automatic detection of brain metastases is often challenged by the small size and subtle nature of metastases. This study aimed to develop a novel deep learning-based brain metastas...

Evaluating Deep Learning Models for Accurate Segmentation of GTV and Oars in MR-Guided Adaptive Radiotherapy for Pancreatic Cancer

Authors: Christopher G. Ainsley, Pradeep Bhetwal, Yingxuan Chen, Wookjin Choi, Vimal K. Desai, Karen E. Mooney, Adam Mueller, Hamidreza Nourzadeh, Yevgeniy Vinogradskiy, Maria Werner-Wasik

Affiliation: Thomas Jefferson University

Abstract Preview: Purpose: MR-guided adaptive radiotherapy (MRgART) has demonstrated improved outcomes for patients with pancreatic cancer. However, the time-consuming re-segmentation of targets and organs-at-risk (OAR...

Fast Synthetic-CT-Free Dose Calculation in MR Guided RT

Authors: Claus Belka, Stefanie Corradini, George Dedes, Nikolaos Delopoulos, Christopher Kurz, Guillaume Landry, Ahmad Neishabouri, Domagoj Radonic, Adrian Thummerer, Niklas Wahl, Fan Xiao

Affiliation: Department of Radiation Oncology, LMU University Hospital, LMU Munich, Department of Medical Physics, LMU Munich, Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO)

Abstract Preview: Purpose: In MR-guided online adaptive radiotherapy, MRI lacks tissue attenuation information necessary for accurate dose calculations. Instead of using deep learning methods to generate synthetic CT i...

Follow-the-Leader Framework for Adaptable Target Segmentation in Radiotherapy

Authors: Mingli Chen, Xuejun Gu, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose: This study introduces a novel template-guided deep learning framework for primary gross tumor volume (GTVp) segmentation, addressing challenges posed by diverse tumor types and enabling a uni...

Foundation Models with Balanced Data Sampling Enhance Auto-Segmentation for Cardiac Substructures

Authors: Chloe Min Seo Choi, Nikhil Mankuzhy, Aneesh Rangnekar, Andreas Rimner, Maria Thor, Harini Veeraraghavan, Abraham Wu

Affiliation: Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Cardiac substructure irradiation predisposes patients for poor outcomes in thoracic radiation therapy. A deep learning model was developed to segment the cardiac substructures invariant to co...

Improving Adversarial Approaches to Synthetic CT Image Generation with Skin Surface Masks

Authors: Mahya Ahmadzadeh, Nagarajan Kandasamy, Keyur Shah, Gregory C. Sharp, Santhosh Vadivel, John MacLaren Walsh

Affiliation: Electrical and Computer Engineering Department, Massachusetts General Hospital, Emory University, Drexel University

Abstract Preview: Purpose: In image-guided radiotherapy (IGRT), cone beam CTs (CBCTs) suffer from distortions that degrade registration with planning CTs. While CycleGANs can generate synthetic CTs (sCTs) from CBCTs, e...

Incorporating Physicians’ Contouring Style into Auto-Segmentation of Clinical Target Volume for Post-Operative Prostate Cancer Radiotherapy Using a Language Encoder

Authors: Steve B. Jiang, Chien-Yi Liao, Dan Nguyen, Daniel Yang, Hengrui Zhao

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Post-operative radiotherapy for prostate cancer requires precise contouring of the clinical target volume (CTV) to account for microscopic disease that is invisible in the image. However, ...

Integrating Foundation Model with Self-Supervised Learning for Brain Lesion Segmentation with Multimodal and Diverse MRI Datasets

Authors: Zong Fan, Fan Lam, Hua Li, Rita Huan-Ting Peng, Yuan Yang

Affiliation: University of Illinois at Urbana Champaign, University of Illinois at Urbana-Champaign, Washington University School of Medicine, University of Illinois Urbana-Champaign

Abstract Preview: Purpose: Accurate lesion segmentation in MRI is critical for early diagnosis, treatment planning, and monitoring disease progression in various neurological disorders. Cross-site MRI data can alleviat...

Integrating Multiple Modalities with Pretrained Swin Foundation Model for Head and Neck Tumor Segmentation

Authors: Jue Jiang, Aneesh Rangnekar, Shiqin Tan, Harini Veeraraghavan

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Weill Cornell Graduate School of Medical Sciences

Abstract Preview: Purpose: Clinicians often use information from FDG-PET and CT to interpret and delineate gross tumor (GTVp) and nodal (GTVn) volumes for radiotherapy planning in head and neck (HN) cancer patients. He...

Integrating Neuroanatomic Knowledge in Clinical Target Volumes for Glioma Patients Using Deep Learning

Authors: Ali Ajdari, Thomas R. Bortfeld, Christopher Bridge, Gregory Buti, Marcela Giovenco, Fredrik Lofman, Gregory C. Sharp, Helen A Shih, Tugba Yilmaz

Affiliation: Massachusetts General Hospital, RaySearch Laboratories, Department Of Radiation Oncology, Massachusetts General Hospital (MGH), Massachusetts General Hospital & Harvard Medical School, Massachusetts General Hospital and Harvard Medical School

Abstract Preview: Purpose: Defining radiation target volumes with accurate integration of the neuroanatomy is one of the major difficulties in designing glioma treatments. We developed a deep learning network for norma...

Intelligent Black Box Recording for Radiation Therapy: Feasibility Study of Vision-Language Models for Treatment Monitoring.

Authors: Wookjin Choi, James M. Lamb, David Romanofski, David H. Thomas, Yevgeniy Vinogradskiy

Affiliation: Drexel, Department of Radiation Oncology, University of California, Los Angeles, Thomas Jefferson University

Abstract Preview: Purpose: To develop an intelligent Black Box Recorder for radiation therapy (RT) that monitors patient treatments using a vision language model.
Methods: The system captures synchronized screen rec...

Knee Image Generation Based on Fine-Tuning Stable Diffusion Model

Authors: Xiangli Cui, Zilei Fu, Man Hu, Wanli Huo, Xiaoqing Wu, Jianguang Zhang, Yingying Zhang

Affiliation: Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, the Zhejiang-New Zealand Joint Vision-Based Intelligent Metrology Laboratory, College of Information Engineering, China Jiliang University, Departments of Radiation Oncology, Zibo Wanjie Cancer Hospital, Department of Oncology, Xiangya Hospital, Central South University, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences

Abstract Preview: Purpose:
Using Stable Diffusion to generate images of the knee in different disease states can enrich the medical imaging database and inject new vitality into the field of medical imaging analysis...

Liver Tumor Auto-Contouring Using Recurrent Neural Networks on MRI-Linac for Adaptive Radiation Therapy

Authors: Yan Dai, Jie Deng, Christopher Kabat, Weiguo Lu, Ying Zhang, Hengrui Zhao

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
MRI-guided adaptive radiotherapy (MRgART) using MR-LINAC systems offers significant advantages for liver cancer, enabling superior tumor delineation and online plan adaptation. However, ma...

Mapping Dosimetry, Excision Probability, and Mpmri Pixel Data to Core-Needle Biopsy Tissue from HDR Prostate Brachytherapy

Authors: Jeffrey Andrews, Nathan E. Becker, Juanita Crook, Andrew Jirasek, Matthew Jonathan Muscat

Affiliation: UBC, BC Cancer Agency, BC Cancer

Abstract Preview: Purpose: To map dosimetry and imaging information to ultrasound and multi-parametric magnetic resonance (mpMR) guided trans-perineal core-needle biopsies, performed during two-fraction prostate high-d...

Multi-Modality Artificial Intelligence for Involved-Site Radiation Therapy: Clinical Target Volume Delineation in High-Risk Pediatric Hodgkin Lymphoma

Authors: Tyler J Bradshaw, Sharon M Castellino, Steve Y Cho, David Hodgson, Bradford S Hoppe, Kara M Kelly, Andrea Lo, Sarah Milgrom, Xin Tie

Affiliation: Department of Radiation Oncology, University of Toronto, Department of Radiology, University of Wisconsin, University of Colorado Anschutz, Department of Medical Physics, University of Wisconsin, Department of Radiation Oncology, Mayo Clinic, Department of Radiation Oncology, BC Cancer, Vancouver Center, Department of Radiology, University of Wisconsin - Madison, Roswell Park Comprehensive Cancer Center, Emory University School of Medicine

Abstract Preview: Purpose: Clinical target volume (CTV) delineation for involved-site radiation therapy (ISRT) in Hodgkin lymphoma (HL) is time-consuming due to the need to analyze multi-time-point PET/CT scans co-regi...

Multi-Organ Segmentation of Pelvic Cone-Beam Computed Tomography (CBCT) with Transformer Models to Enhance Adaptive Radiotherapy for Prostate Cancer

Authors: Ming Chao, Thomas Chum, Tenzin Kunkyab, Yang Lei, Tian Liu, Richard G Stock, Hasan Wazir, Junyi Xia, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai

Abstract Preview: Purpose:
This study aims to develop effective strategies for multi-organ segmentation of pelvic cone-beam computed tomography (CBCT) images based on transformer models to facilitate adaptive radiat...

NA-Unetr: A Neighborhood Attention Transformer Network for Enhanced 3D Segmentation of the Left Anterior Descending Artery

Authors: Hassan Bagher-Ebadian, Ahmed I Ghanem, Joshua P. Kim, Chengyin Li, Rafi Ibn Sultan, Kundan S Thind, Dongxiao Zhu

Affiliation: Wayne State University, Department of Radiation Oncology, Henry Ford Health-Cancer, Detroit, MI and Alexandria Department of Clinical Oncology, Faculty of Medicine, Alexandria University, Henry Ford Health

Abstract Preview: Purpose: Accurate segmentation of the Left Anterior Descending (LAD) artery in free-breathing 3D treatment planning CT is crucial for radiotherapy but remains challenging due to its small size, comple...

Nnae: Automating Anomaly Detection and Quality Assurance in Medical Image Segmentation

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose:
Deep learning-based automatic medical image segmentation is increasingly employed in clinical practice, significantly reducing manual workload. However, verifying segmentation results rema...

Optimization of the U-Net Model for the Radiation Dose Prediction in Lung Cancer RT Plans and Its Uncertainty Quantification

Authors: Ibtisam Almajnooni, Victor Cobilean, Milos Manic, Harindra Sandun Mavikumbure, Elisabeth Weiss, Lulin Yuan

Affiliation: Virginia Commonwealth University

Abstract Preview: Purpose: This study aims to optimize the 3D U-Net architecture for dose prediction in lung cancer radiation therapy (RT) plans, particularly in scenarios with limited clinical data, as well as to quan...

Pancrea-Seg-Net: A Semi-Supervised Deep Learning Framework for Pancreatic Tumor and Vessel Segmentation

Authors: Manju Liu, Ning Wen, Fuhua Yan, Yanzhao Yang, Zhenyu Yang, Haoran Zhang, Lei Zhang, Yajiao Zhang

Affiliation: Department of Radiology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy where precise segmentation of tumors and adjacent vessels is crucial for effective treatment planning. This study dev...

Parameterized 4D Deformable Registration (p4Dreg) in Abdominal 4DCT Scans

Authors: Edward Robert Criscuolo, Deshan Yang

Affiliation: Duke University, Department of Radiation Oncology, Duke University

Abstract Preview: Purpose:
Deformable registration of 4DCT images has many clinical applications, but current methods are unreliable and can produce dangerous errors. Iterative, parametrized image registration does ...

Patient-Specific Coronary Artery Habitat Model for Enhanced Cardiac Sparing

Authors: Blessing Akinro, Soumyanil Banerjee, Ming Dong, Carri K. Glide-Hurst, Prashant Nagpal, Chase Ruff, Nicholas R. Summerfield, Timothy P. Szczykutowicz

Affiliation: Departments of Human Oncology and Medical Physics, University of Wisconsin-Madison, Departments of Radiology and Medical Physics, University Wisconsin-Madison, Department of Radiology, University of Wisconsin-Madison, Department of Computer Science, Wayne State University, Department of Human Oncology

Abstract Preview: Purpose: Radiation dose to coronary arteries (CAs) during thoracic radiotherapy (RT) is linked to cardiotoxicity. However, precise CA delineation for avoidance is limited by image quality and CA compl...

Personalized Dosimetric Workflow for 177Lu-PSMA Treatments Considering the Cross-Irradiation from Bone Metastases to Red Bone Marrow

Authors: Nadège Anizan, David Broggio, Désirée Deandreis, Didier Franck, Camilo Garcia, Stéphanie Lamart, Sébastien Leygnac, Alexandre Pignard

Affiliation: Gustave Roussy, Service de Physique Médicale, Institut Bergonié, Service de Physique Médicale, Gustave Roussy, Service de Médecine Nucléaire, Autorité de Sûreté Nucléaire et de Radioprotection (ASNR), PSE-SANTE/SDOS/LEDI, Autorité de Sûreté Nucléaire et de Radioprotection (ASNR), PSE-SANTE/SDOS

Abstract Preview: Purpose: This work aimed at developing an innovative workflow for 177Lu-PSMA personalized dosimetry to lesions and organs at risk (OAR) simultaneously, considering the cross-irradiation from bone meta...

Prospective Organ-Level Dose Estimation in CT Imaging Using Scout-Net: A Comparison with Established Methods

Authors: Maria Jose Medrano, Grant Stevens, Liyan Sun, Justin Ruey Tse, Adam S. Wang, Sen Wang

Affiliation: Department of Radiology, Stanford University, GE HealthCare, Stanford University

Abstract Preview: Purpose: Patient exposure to ionizing radiation is a major concern in CT imaging. Size-specific dose estimation methods can prospectively estimate organ-level radiation doses based on patient sizes an...

Python-Native Cerr for Cloud-Based Medical Image Analyses

Authors: Aditya P. Apte, Joseph O. Deasy, Sharif Elguindi, Aditi Iyer, Jue Jiang, Eve Marie LoCastro, Jung Hun Oh, Amita Shukla-Dave, Harini Veeraraghavan

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: We present port of popular Computational Environment for Radiological Research software platform to Python programming language to cater to cloud-based analyses.
Methods: The components of...

Redefining the Down-Sampling Scheme of U-Net for Precision Biomedical Image Segmentation

Authors: Yizheng Chen, Md Tauhidul Islam, Mingjie Li, Lei Xing

Affiliation: Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose:
Biomedical image segmentation (BIS) is a cornerstone of medical physics, enabling accurate delineation of anatomical structures and abnormalities, which is critical for diagnosis, treatmen...

Refined Nnu-Net Training for Practice-Specific Autosegmentation of APBI Targets

Authors: Daniel A. Alexander, Jonathan Baron, Brook Kennedy Byrd, William Ross Green, Bolin Li, Rafe A. McBeth, Abigail Pepin, Steven Philbrook

Affiliation: Department of Radiation Oncology and Applied Sciences, Department of Radiation Oncology, University of Pennsylvania, Thayer School of Engineering, University of Pennsylvania

Abstract Preview: Purpose: As accelerated partial breast irradiation (APBI) gains traction, the prospect of a rapid sim-to-completion of treatment workflow is an attractive option for patients. While OAR autocontouring...

Research on Multi-Organ Segmentation Based on Cross-Domain Transfer Learning

Authors: Jiali Gong, Yi Guo, Chi Han, Wanli Huo, Hongdong Liu, Zhao Peng, Yaping Qi, Zhaojuan Zhang

Affiliation: Department of Radiotherapy, cancer center, The First Affiliated Hospital of Fujian Medical University, Department of Oncology, Xiangya Hospital, Central South University, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, China Jiliang University, Division of lonizing Radiation Metrology, National Institute of Metrology, Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, the Zhejiang-New Zealand Joint Vision-Based Intelligent Metrology Laboratory, College of Information Engineering, China Jiliang University

Abstract Preview: Purpose: To address overfitting from limited training data in multi-organ segmentation, an efficient transfer learning framework is proposed. It reduces reliance on training samples, enabling a single...

SPECT/CT Multimodal Segmentation of Bone Marrow for Theranostic Dosimetry

Authors: Tommaso Frigerio, Joshua Genender, John M. Hoffman, Catherine (Caffi) Meyer

Affiliation: UCLA, David Geffen School of Medicine at UCLA

Abstract Preview: Purpose: Accurate bone marrow segmentation is required for bone marrow dosimetry to monitor for dangers in PSMA-Lu177 radioligand therapy. We introduce a hybrid (AI/semantic knowledge) segmentation pi...

Spatially Informed Auto-Segmentation of Cardiac Nodes for Radiotherapy Treatment Planning

Authors: Ming Dong, Carri K. Glide-Hurst, Joshua Pan, Nicholas R. Summerfield

Affiliation: Department of Computer Science, Wayne State University, Departments of Human Oncology and Medical Physics, University of Wisconsin-Madison, Department of Human Oncology, University of Wisconsin-Madison

Abstract Preview: Purpose: Radiation dose to the cardiac nodes is more strongly associated with conduction disorders and arrythmias than whole heart (WH) metrics. However, node segmentation is challenging due to comple...

Spherical Slicing and Convolutions for Accurate Glioma Tumor Segmentation Using Multi-Parametric MRI

Authors: Ke Lu, Chunhao Wang, Ruoxu Xia, Zhenyu Yang, Fang-Fang Yin, Chulong Zhang, Lei Zhang, Rihui Zhang, Jingtong Zhao, Haiming Zhu

Affiliation: Duke University, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University, The First People's Hospital of Kunshan

Abstract Preview: Purpose: The human brain’s spherical geometry offers unique opportunities for improving the segmentation of tiny and irregular anatomical structures. We hypothesize that representing the brain in sphe...

Teaching an Old Dog New Tricks: Unlocking Hidden Potential in Existing Frameworks for Versatile Radiotherapy Applications

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose:
This work demonstrates how existing software, when creatively adapted, can address a wide range of clinical challenges. By focusing on data exploration and application-specific modificatio...

To Establish Local Diagnostic Reference Levels (DRLs) for Head and Neck Computed Tomography (CT) Exams in Abuja, Nigeria, and to Investigate the Performance of Brain Metastasis (BM) and Brain Lesion (BL) Segmentation Techniques Using U-Net Models.

Authors: Nuraddeen Nasiru Garba, Kalpana M Kanal, Abdullahi Mohammed, Rabiu Nasiru, Muhammad SHAFIU Shehu, Daniel Vergara, Joseph Everett Wishart

Affiliation: AHMADU BELLO UNIVERSITY, ZARIA, University of Washington

Abstract Preview: Purpose: To establish local Diagnostic Reference Levels (DRLs) for head and neck computed tomography (CT) exams in Abuja, Nigeria, and to investigate the performance of brain metastasis (BM) and brain...

Uncertainty-Guided Cross-Domain Adaptation for Unsupervised Medical Image Segmentation

Authors: Yunxiang Li, Weiguo Lu, Xiaoxue Qian, Hua-Chieh Shao, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Curating high-quality, labeled data for medical image segmentation can be challenging and costly, considering the existence of various image domains with differing modalities/protocols. Cr...

Universal MR-to-Synthetic CT: A Streamlined Framework for MR-Only Radiotherapy Planning

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose:
Converting MR images to synthetic CT (MR2sCT) is highly desirable as it streamlines the radiotherapy treatment planning workflow. This approach leverages the superior soft tissue visibilit...

Validation of an Open Source Automatic Segmentation Tool for Personalized Dosimetry

Authors: Klaus Bacher, Louise D'hondt, Jeff Rutten, Gwenny Verfaillie

Affiliation: Ghent University

Abstract Preview: Purpose: Manual organ segmentation is a very time-consuming but necessary process in personalized dosimetry. Automatic segmentation tools may alleviate this task. In this study the impact of automatic...