Search Submissions πŸ”Ž

Results for "supervised learning": 22 found

A Hybrid Radiomics-Integrated Machine Learning Framework for Early Identification of Potential Radiation Pneumonitis in Lung Cancer Patients

Authors: Christos Ilioudis, Marios Myronakis, Sotirios Raptis, Kyriaki Theodorou

Affiliation: Medical Physics Department, Medical School, University of Thessaly, Department of Information and Electronic Engineering, International Hellenic University (IHU)

Abstract Preview: Purpose: This study presents a radiomics-driven, machine learning framework developed to predict the possibility of Radiation Pneumonitis (RP), as a side effect of radiation therapy in lung cancer pat...

A SAM-Guided and Match-Based Semi-Supervised Segmentation Framework for Medical Imaging

Authors: Weiguo Lu, Jax Luo, Xiaoxue Qian, Hua-Chieh Shao, Guoping Xu, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, Harvard Medical School

Abstract Preview: Purpose:
Semi-supervised segmentation leverages sparse annotation information to learn rich representations from combined labeled and label-less data for segmentation tasks. This study leverages th...

A Self-Supervised Deep Learning Approach for Automatic Identification and Metal Artifact Reduction in Cone-Beam CT for Brachytherapy

Authors: Rani Anne', Wenchao Cao, Yingxuan Chen, Wookjin Choi, Firas Mourtada, Yevgeniy Vinogradskiy

Affiliation: Thomas Jefferson University

Abstract Preview: Purpose: In-room mobile cone-beam CT (CBCT) is emerging to enhance high-dose-rate (HDR) brachytherapy workflow using on-demand imaging. However, metal artifacts from X-ray markers inside gynecological...

Adversarial Diffusion-Based Self-Supervised Learning for High-Resolution MR Imaging

Authors: Zachary Buchwald, Chih-Wei Chang, Zach Eidex, Richard L.J. Qiu, Mojtaba Safari, Shansong Wang, Xiaofeng Yang, David Yu

Affiliation: Emory University and Winship Cancer Institute, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: MRI offers excellent soft tissue contrast for diagnosis and treatment but suffers from long acquisition times, causing patient discomfort and motion artifacts. To accelerate MRI, supervised d...

Attention-Based Multiple Instance Learning of Head and Neck Cancer Grading on Digital Pathology Using Vision-Language Foundational Models

Authors: Kyle J. Lafata, Xiang Li, Megan K. Russ, Zion Sheng

Affiliation: Duke University, Department of Radiation Oncology, Duke University, Clinical Imaging Physics Group, Department of Radiology, Duke University Health System

Abstract Preview: Purpose: To adapt Vision-Language Foundational Models (VLFM) to perform HNSCC tumor grading on H&E whole slide images (WSI) via attention-based multiple instance learning (ABMIL).
Methods: We utili...

BEST IN PHYSICS IMAGING: Revolutionizing Neurocognitive Dynamic Pattern Discovery with Self-Supervised AI in Functional Brain Imaging

Authors: Lei Xing, Zixia Zhou

Affiliation: Department of Radiation Oncology, Stanford University, Department of Radiation Oncology, Stanford University, Stanford

Abstract Preview: Purpose: Functional brain imaging techniques, such as functional magnetic resonance imaging (fMRI), generate high-dimensional, dynamic data reflecting complex neural processes. However, extracting rob...

Deep Learning-Based Auto Segmentation of Oars in Head and Neck Radiation Therapy

Authors: Laila A Gharzai, Bharat B Mittal, Poonam Yadav

Affiliation: Northwestern Feinberg School of Medicine, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Northwestern University Feinberg School of Medicine

Abstract Preview: Purpose: Multiple studies have shown the increasing role of deep learning in segmenting regions of interest. This work presents the feasibility of auto-segmenting the critical structures for head and ...

Development of Foundation Model for Analysis of Prostate Cancer with Mpmri

Authors: Ahmad Algohary, Adrian Breto, Quadre Emery, Radka Stoyanova

Affiliation: University of Miami, Department of Radiation Oncology, University of Miami

Abstract Preview: Purpose:
To develop a foundation model (U-Found) for multiparametric MRI (mpMRI) of the prostate by using self-supervised learning to prove the feasibility of a prostate-oriented foundation model u...

Estimation of Heart Dose in Left Breast Cancer Radiotherapy: Assessment of Vdibh Feasibility Using the Supervised Machine Learning Algorithm

Authors: Rajeev Gupta, Shriram Ashok Rajurkar, Teerthraj Verma

Affiliation: King George's Medical University, King George's Medical University, UP

Abstract Preview: Purpose:
The volunteer deep inspiration breath hold (vDIBH) technique is used to reduce the heart dose in left breast cancer radiotherapy. Many times, it is faced that despite rigorous exercise and...

Evaluating Supervised Learning Models for Binary Classification of Radiomic Data in Predicting Head and Neck Cancer Treatment Outcomes

Authors: Theodore Higgins Arsenault, Kyle O'Carroll, Christian Erik Petersen, Alex T. Price, Meiying Xing

Affiliation: University Hospitals Seidman Cancer Center

Abstract Preview: Purpose: To assess the performance of various supervised learning models’ ability to predict binary classification of radiomic data for head and neck (H&N) cancer treatment outcomes.
Methods: Using...

Impact of Transfer Learning on Estimation of Intravoxel Incoherent Motion Parameters in the Liver

Authors: Marissa Brown, Geoffrey D. Clarke, Luke Norton

Affiliation: University of Texas Health Science Center at San Antonio

Abstract Preview: Purpose: To evaluate how different learning strategies affect convolutional neural network (CNN) estimates of the liver's intravoxel incoherent motion (IVIM) parameters.
Methods: A 3-stage U-Net wa...

Improving Mammography Diagnosis Accuracy through Global Context and Local Lesion Integration

Authors: Minbin Chen, Xiaoyi Dai, Xiaoyu Duan, Chunhao Wang, Fan Xia, Zhenyu Yang, Fang-Fang Yin, Chulong Zhang, Rihui Zhang

Affiliation: Duke University, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University, The First People's Hospital of Kunshan

Abstract Preview: Purpose: Deep learning (DL)-based mammography diagnosis presents unique challenges, as accurate interpretation requires both global breast condition analysis and local lesion structural information. E...

Integrating Foundation Model with Self-Supervised Learning for Brain Lesion Segmentation with Multimodal and Diverse MRI Datasets

Authors: Zong Fan, Fan Lam, Hua Li, Rita Huan-Ting Peng, Yuan Yang

Affiliation: University of Illinois at Urbana Champaign, University of Illinois at Urbana-Champaign, Washington University School of Medicine, University of Illinois Urbana-Champaign

Abstract Preview: Purpose: Accurate lesion segmentation in MRI is critical for early diagnosis, treatment planning, and monitoring disease progression in various neurological disorders. Cross-site MRI data can alleviat...

Memory-Efficient Deep Learning for Volumetric Cone-Beam CT Image Reconstruction

Authors: Ziqi Gao, Lei Xing, Siqi Ye, S. Kevin Zhou

Affiliation: Department of Radiation Oncology, Stanford University, University of Science and Technology of China (USTC)

Abstract Preview: Purpose: To address the challenge of high memory usage in volumetric cone-beam CT (CBCT) imaging, we propose a method that combines joint reconstruction and super-resolution for sparsely sampled CBCT ...

Neural Implicit K-Space for Accelerated Patient-Specific Non-Cartesian MRI Reconstruction

Authors: Daniel O Connor, Mary Feng, Hui Lin, Hengjie Liu, Xin Miao, Michael Ohliger, Jess E. Scholey, Ke Sheng, DI Xu, Wensha Yang, Yang Yang

Affiliation: UCSF, University of California, Los Angeles, Department of Radiation Oncology, University of California San Francisco, Department of Radiation Oncology, University of California, San Francisco, Department of Radiation Oncology, University of California at San Francisco, University of San Francisco, Department of Radiology, University of California, San Francisco, University of California San Francisco, Siemens Medical Solutions USA Inc.

Abstract Preview: Purpose: The scanning time for a fully sampled MRI is lengthy. Compressed sensing (CS) has been developed to minimize image artifacts in accelerated scans, but the required iterative reconstruction is...

Pancrea-Seg-Net: A Semi-Supervised Deep Learning Framework for Pancreatic Tumor and Vessel Segmentation

Authors: Manju Liu, Ning Wen, Fuhua Yan, Yanzhao Yang, Zhenyu Yang, Haoran Zhang, Lei Zhang, Yajiao Zhang

Affiliation: Department of Radiology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy where precise segmentation of tumors and adjacent vessels is crucial for effective treatment planning. This study dev...

Posterior-Mean Diffusion Model for Realistic PET Image Reconstruction

Authors: Osama R. Mawlawi, Yiran Sun

Affiliation: RICE University, UT MD Anderson Cancer Center

Abstract Preview: Purpose: Conventional PET reconstruction methods often produce noisy images with artifacts due to data/model mismatches and inconsistencies. Recently, deep learning-based conditional denoising diffusi...

Reliable Markerless Lung Tumor Tracking with Built-in Patient-Specific Quality Assurance

Authors: Weixing Cai, Laura I. Cervino, Qiyong Fan, Yabo Fu, Tianfang Li, Xiang Li, Jean M. Moran, Hai Pham, Pengpeng Zhang

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: AAPM Task Group Report 273 emphasizes the importance of rigorous validation to ensure the generalizability and robustness of machine learning-based clinical tools before their implementation ...

Tailor-TS System: Tailored Tumor Segmentation System with Facility-Specific Semi-Supervised Learning

Authors: Gong Vincent Hao, Daisuke Kawahara, Jokichi Kawazoe, Yuji Murakami, Ikuno Nishibuchi, Peiying Colleen Ruan, Daguang Xu, Dong Yang

Affiliation: Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima University, NVIDIA

Abstract Preview: Purpose:
Accurate tumor segmentation in head and neck cancer is critical for effective treatment planning, but variability in practices across medical facilities poses challenges for standardizatio...

VMAT Machine Parameter Optimization Using Policy Gradient Reinforcement Learning

Authors: Avinash Mudireddy, Nathan Shaffer, Joel J. St-Aubin

Affiliation: University of Iowa

Abstract Preview: Purpose: This work demonstrates preliminary results in training a reinforcement learning (RL) network to perform VMAT machine parameter optimization.
Methods: We implemented a policy gradient RL al...

Weak-to-Strong Generalization for Interpretable Deep Learning-Based Histological Image Classification Guided By Hand-Crafted Features

Authors: Mark Anastasio, Zong Fan, Hua Li, Changjie Lu, Lulu Sun, Xiaowei Wang, Zhimin Wang, Michael Wu

Affiliation: University of Illinois at Urbana-Champaign, University of Illinois at Chicago, Washington University School of Medicine, University of Illinois Urbana-Champaign, Washington University in St. Louis, University Laboratory High School

Abstract Preview: Purpose: Histological whole slide images (WSIs) are vital in clinical diagnosis. Although deep learning (DL) methods have achieved great success in this task, they often lack interpretability. Traditi...

Weakly Supervised Spatial Implicit Neural Representation Learning for 3D MRI-Ultrasound Deformable Image Registration in HDR Prostate Brachytherapy

Authors: Michael Baine, Yang Lei, Yu Lei, Ruirui Liu, Tian Liu, Jing Wang

Affiliation: Icahn School of Medicine at Mount Sinai, University of Nebraska Medical Center

Abstract Preview: Purpose: Accurate 3D deformable registration of MRI and ultrasound (US) is essential for real-time image guidance during high-dose-rate (HDR) prostate brachytherapy. However, MRI-US registration of th...