Search Submissions 🔎

Results for "trained synthetic": 28 found

A Foundational Model for Medical Imaging Modality Translation in Head and Neck Radiotherapy

Authors: Jie Deng, Yunxiang Li, Xiao Liang, Weiguo Lu, Jiacheng Xie, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, University of Texas Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, The University of Texas at Dallas

Abstract Preview: Purpose: Recently, foundational models trained on large datasets have shown remarkable performance across various tasks. Developing a foundational model for medical image modality translation in head-...

A Modular Approach to Reversible and Stackable Medical Imaging Translation Models: CBCT-Based Synthetic MRI with Multiple U-Nets in Series (MUNETs)

Authors: Eric Chang, Nguyen Phuong Dang, Andrew Lim, Lauren Lukas, Lijun Ma, Yutaka Natsuaki, Zhengzheng Xu, Hualin Zhang

Affiliation: Radiation Oncology, Keck School of Medicine of USC

Abstract Preview: Purpose: Harnessed the power of AI and Deep Learning (DL), Generalized Neural Network models for medical image transformation are trained to predict target images from reference images, often requirin...

AI-Based Registration-Free 3T T2-Weighted MRI Synthesis Using Truefisp MRI Acquired on a 0.35T MR-Linac System

Authors: Hilary P Bagshaw, Mark K Buyyounouski, Cynthia Fu-Yu Chuang, Yu Gao, Dimitre Hristov, Lianli Liu, Lawrie Skinner, Lei Xing

Affiliation: Department of Radiation Oncology, Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose:
MR-guided radiation therapy has introduced a significant leap in cancer treatment by allowing adaptive treatment. The low-field MR-guided system predominantly uses the TrueFISP sequence, w...

Advancing Thoracic Synthetic CT Images with Enhanced Cyclegan for Adaptive Radiotherapy Applications

Authors: Silambarasan Anbumani, Nicolette O'Connell, Eenas A. Omari, Amanda Pan, Eric S. Paulson, Lindsay Puckett, Monica E. Shukla, Dan Thill, Jiaofeng Xu

Affiliation: Elekta Inc, Elekta Limited, Linac House, Department of Radiation Oncology, Medical College of Wisconsin

Abstract Preview: Purpose: Accurate electron density information from on-board imaging is essential for direct dose calculations in adaptive radiotherapy (ART). This study evaluates a deep learning model for thoracic s...

An Adaptive Radiotherapy Strategy Study Based on Segmented Synthesis and Deformational Registration

Authors: Jie Hu, Zhengdong Jiang, Nan Li, Tie Lv, Yuqing Xia, Shouping Xu, Gaolong Zhang, Wei Zhao, Changyou Zhong

Affiliation: School of Physics, Beihang University, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Radiotherapy Department of Meizhou People’s Hospital (Huangtang Hospital), UT Health San Antonio, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, Peopleʼs Republic of China, Department of Radiation Oncology

Abstract Preview: Purpose: Patients usually undergo cone-beam computed tomography (CBCT) scans which are used for patient set-up before radiotherapy. However, the low image quality of CBCT hinders its use in adaptive r...

Assessing the Risks of Synthetic MRI Data in Deep Learning: A Study on U-Net Segmentation Accuracy

Authors: Chuangxin Chu, Haotian Huang, Tianhao Li, Jingyu Lu, Zhenyu Yang, Fang-Fang Yin, Tianyu Zeng, Chulong Zhang, Yujia Zheng

Affiliation: The Hong Kong Polytechnic University, Nanyang Technological University, Australian National University, Medical Physics Graduate Program, Duke Kunshan University, North China University of Technology, Duke Kunshan University

Abstract Preview: Purpose: Deep learning segmentation models, such as U-Net, rely on high-quality image-segmentation pairs for accurate predictions. However, the recent increasing use of generative networks for creatin...

Binary Classification of Lymphedema in 3DCRT Patients Using Machine Learning on 3D Dose Distribution Data

Authors: Jee Suk Chang, Hojin Kim, Jin Sung Kim, Jaehyun Seok

Affiliation: Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Department of Integrative Medicine

Abstract Preview: Purpose: This study aims to leverage 3D dose distribution data to develop a machine learning model capable of accurately predicting lymphedema occurrence in patients undergoing 3D conformal radiation ...

CT-Free PET Imaging: Synthetic CT Generation for Efficient and Accurate PET-Based Planning

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose:
PET is used in radiotherapy workflows for accurate target delineation. However, a separate CT scan is typically required for attenuation correction in PET imaging and for registering PET-d...

Comparative Analysis of Nine Deep Learning Architectures for Variable Density Grappa 1H Magnetic Resonance Spectroscopy Imaging (MRSI) Reconstruction

Authors: Kimberly Chan, Anke Henning, Mahrshi Jani, Andrew Wright, Xinyu Zhang

Affiliation: Advanced Imaging Research Center (AIRC), UT Southwestern Medical Center

Abstract Preview: Purpose: To evaluate the performance of multiple deep learning architectures for MRSI reconstruction and determine their effectiveness in maintaining high-resolution metabolite mapping while reducing ...

Contrast-Free Enhancement of Coronary Artery Stenosis: Synthetic Ccta from Non-Contrast CT Using Diffusion Model

Authors: Abdusalam Abdukerim

Affiliation: Institute for Medical Imaging Technology, Ruijin Hospital

Abstract Preview: Purpose:
Coronary computed tomography angiography (CCTA) is the gold-standard non-invasive test for coronary artery disease (CAD), but iodine contrast agents (ICA) pose limitations in specific popu...

Cycle-Consistent Multi-Task Automated Segmentation and Synthetic CT Generation Model for Adaptive Proton Therapy

Authors: Derek Tang, Susu Yan

Affiliation: Massachusetts General Hospital

Abstract Preview: Purpose: To evaluate the performance of a multi-task automated-segmentation and synthetic CT generation model (sCT) and investigate its application in an adaptive proton therapy workflow.
Methods: ...

Evaluation of AI-Generated Synthetic 4DCT from 3DCT for Radiotherapy Planning

Authors: Shinichiro Mori, Isabella Pfeiffer, Chester R. Ramsey, Alexander Usynin

Affiliation: Thompson Proton Center, National Institutes for Quantum Science and Technology, Thompson Cancer Survival Center

Abstract Preview: Purpose: Four-dimensional CT imaging (4DCT) has become a standard tool for managing respiratory motion in radiation therapy. However, many treatment delivery systems and most diagnostic CT scanners la...

Fast 3D Scintillation Dosimetry Using Single View Deep Learning Reconstruction

Authors: Louis Archambault, Nicolas Drouin, Alexis Horik, Simon Thibault

Affiliation: Département de Physique, de Génie Physique et D'optique, et Centre de Recherche sur le Cancer, Université Laval, Département de Physique, de Génie Physique et D'optique, et Centre d'optique, photonique et laser, Université Laval

Abstract Preview: Purpose: To develop a novel type of real-time 3D dosimeter for the quality assurance of linear accelerators used in external beam radiotherapy.
Methods: An experimental setup was constructed using ...

Feasibility Study of Deep Learning-Based MRI-to-PET Generation for Rectal Cancer: Overall Survival Prediction and Pathological Complete Response Assessment

Authors: Weigang Hu, Zhenhao Li, Jiazhou Wang, Xiaojie Yin, Zhen Zhang

Affiliation: Fudan University Shanghai Cancer Center

Abstract Preview: Purpose:
This study aims to develop and validate a novel deep learning method to generate synthetic PET images for rectal cancer from MRI data. By incorporating metabolic information from the synth...

Feasibility of Using a Convolutional Neural Network to Predict Physician Evaluation of Synthetic Medical Images

Authors: Sofia Beer, Menal Bhandari, Alec Block, Nader Darwish, Joseph Dingillo, Sebastien A. Gros, Hyejoo Kang, Andrew Keeler, Rajkumar Kettimuthu, Jason Patrick Luce, Ha Nguyen, John C. Roeske, George K. Thiruvathukal, Austin Yunker

Affiliation: Data Science and Learning Division, Argonne National Laboratory, Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Stritch School of Medicine Loyola University Chicago, Cardinal Bernardin Cancer Center, Loyola University Chicago, Department of Computer Science, Loyola University of Chicago

Abstract Preview: Purpose: Artificial intelligence (AI) generated synthetic medical images are seeing increased use in radiology and radiation oncology. Physician observer studies are an ideal way to evaluate the usabi...

Hyperpolarized 13c Image Superresolution with Deep Learning

Authors: Kofi M. Deh, Tamas Jozsa, Tsang-Wei Tu

Affiliation: Cranfield University, Howard University Hospital, Howard University

Abstract Preview: Purpose: To enhance the quality of hyperpolarized (HP) 13C magnetic resonance images by integrating deep learning with perfusion modeling.
Methods: A convolutional neural network (CNN) and a superr...

Identification of Potential Patients for Resimulation and Adaptive Planning By Machine Learning

Authors: Mark Ashamalla, Renee Farrell, Jinkoo Kim, Kartik Mani, Xin Qian, Samuel Ryu, Yizhou Zhao

Affiliation: Stony Brook Medicine, Stony Brook University Hospital

Abstract Preview: Purpose: Adaptive planning is increasingly used in head and neck radiation therapy due to factors like tumor response or changes in patient anatomy. However, methods such as resimulation or offline re...

Image Quality Enhancement for Transrectal Ultrasound Imaging of Prostate Brachytherapy Using Deep Learning: A Needle Eraser

Authors: Hilary P Bagshaw, Mark K Buyyounouski, Serdar Charyyev, Xianjin Dai, PhD, Yu Gao, Thomas R. Niedermayr, Lei Xing

Affiliation: Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose: Real-time transrectal ultrasound imaging is the gold standard for needle placement and treatment planning of real-time based-ultrasound-based high dose-rate (HDR) prostate brachytherapy. Cumu...

MRI Radiomics-Based Machine Learning Model for Predicting BNCT Treatment Response in Glioblastoma

Authors: Huang Chi-Shiuan, Wu Chih-Chun, Hui-Yu Cathy Tsai, Chen Yan-Han, Chen Yi-Wei, Pan Yi-Ying

Affiliation: Institute of Nuclear Engineering and Science, National Tsing Hua University, Taipei Veterans General Hospital, Tri-Service General Hospital

Abstract Preview: Purpose:
This study aims to develop and validate a machine learning (ML) model based on MRI-derived radiomic features to predict progressive disease (PD) in glioblastoma (GBM) patients four months ...

Mask-Based Synthetic Contrast-Enhanced CT Generation for Advancing Data Limited Segmentation on Cardiac Substructure

Authors: Jin Sung Kim, Chanwoong Lee, Young Hun Yoon

Affiliation: Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine

Abstract Preview: Purpose: Chest contrast-enhanced CT (CECT) serves as a valuable tool for cardiac imaging, but its lack of detailed anatomical visualization limits its utility in segmentation tasks. While CECT offers ...

Multi-Vendor Validation of a Deep Learning-Based Synthetic CT Generation Model for MR-Only Radiotherapy Planning in the Pelvis

Authors: Gregory Bolard, Rabten Datsang, Sarah Ghandour, Timo Kiljunen, Pauliina Paavilainen, Sami Suilamo, Katlin Tiigi

Affiliation: Turku University Hospital, Virginia Commonwealth University, MVision AI, North Estonia Medical Centre, Docrates Cancer Center, Hopital Riviera-Chablais

Abstract Preview: Purpose: To verify the performance of a vendor-neutral deep learning model for synthetic CT generation from T2-weighted and balanced steady-state MR sequences to support both MR-only simulation and MR...

Skin Lesion Subtype Classification Using Lesion and Border Radiomic Features

Authors: Rituparna Basak, Maede Boroji, Renee F Cattell, Vahid Danesh, Imin Kao, Kartik Mani, Xin Qian, Samuel Ryu, Tiezhi Zhang

Affiliation: Stony Brook Medicine, Stony Brook University, Washington University in St. Louis, Stony Brook University Hospital

Abstract Preview: Purpose: Fundamental qualitative characteristics physicians use to differentiate skin lesion subtypes include asymmetry, border irregularity, and color. Radiomic features have potential to quantify th...

Structure-Based Diffusion Model for CT Synthesis from MR Images for Radiotherapy Treatment Planning

Authors: Samuel Kadoury, Redha Touati

Affiliation: Polytechnique Montréal

Abstract Preview: Purpose:
Generating synthetic CT images from MR acquisitions for radiotherapy planning allows to integrate soft tissue contrast alongside density information stemming from CT, thus improving tumor ...

Synthetic CT Generation from a Cycle Diffusion Model Based Framework for Ultrasound-Based Prostate HDR Brachytherapy

Authors: Michael Baine, Charles Enke, Yang Lei, Yu Lei, Ruirui Liu, Su-Min Zhou

Affiliation: Icahn School of Medicine at Mount Sinai, University of Nebraska Medical Center, Department of Radiation Oncology, University of Nebraska Medical Center

Abstract Preview: Purpose: This study presents a framework for generating synthetic CT images using a Cycle Diffusion model, which can be utilized to enhance needle conspicuity in ultrasound-guided prostate HDR brachyt...

Teaching an Old Dog New Tricks: Unlocking Hidden Potential in Existing Frameworks for Versatile Radiotherapy Applications

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose:
This work demonstrates how existing software, when creatively adapted, can address a wide range of clinical challenges. By focusing on data exploration and application-specific modificatio...

Towards Real-Time Marker-Less Prostate Tracking on Standard Radiation Therapy Systems

Authors: Freeman Jin, Paul J. Keall, Alistair MacDonald, Adam Mylonas, Chandrima Sengupta

Affiliation: Image X Institute, Faculty of Medicine and Health, University of Sydney, Image X Institute, Faculty of Medicine and Health, The University of Sydney, Image X Institute, School of Health Sciences, University of Sydney

Abstract Preview: Purpose: During radiation therapy, tumours in the prostate may move from the planned treatment position, leading to significant dose deviations above clinical tolerances Surveys have indicated the nee...

Uncertainties on Synthetic-CT Generation from CBCT: Another Layer of Complexity in Abdominal Adaptive Radiotherapy

Authors: Laura I. Cervino, Wendy B. Harris, Paulo Quintero, Hao Zhang

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: To evaluate the impact of the prediction uncertainty from CBCT-based synthetic CT (sCT) generation in abdominal adaptive radiotherapy.

Methods: CT and CBCT images from 65 abdominal pat...

Universal MR-to-Synthetic CT: A Streamlined Framework for MR-Only Radiotherapy Planning

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose:
Converting MR images to synthetic CT (MR2sCT) is highly desirable as it streamlines the radiotherapy treatment planning workflow. This approach leverages the superior soft tissue visibilit...