Search Submissions 🔎

Results for "training set": 162 found

23na Magnetic Resonance Imaging k-Space Denoising

Authors: Lorenzo Arsini, Andrea Ciardiello, Fabio Massimo D'Amore, Stefano Giagu, Federico Giove, Carlo Mancini-Terracciano, Cecilia Voena

Affiliation: Istituto Superiore di SanitĂ , Sapienza University of Rome, UniversitĂ  Sapienza Roma, Magnetic Resonance for Brain Investigation Laboratory, Museo Storico della Fisica e Centro di Studi e Ricerche Enrico Fermi

Abstract Preview: Purpose: To leverage newly developed heteronuclear magnetic resonance imaging (MRI) techniques, particularly sodium (23Na) imaging, for identifying potential biomarkers of Alzheimer's disease—such as ...

A Deep Learning Method for Direct Vmi Inference Using a Dual-Layer Radiotherapy Kv-CBCT Imager

Authors: Ross I. Berbeco, Vera Birrer, Raphael Bruegger, Pablo Corral Arroyo, Roshanak Etemadpour, Dianne M. Ferguson, Rony Fueglistaller, Thomas C. Harris, Yue-Houng Hu, Matthew W. Jacobson, Mathias Lehmann, Nicholas Lowther, Daniel Morf, Marios Myronakis

Affiliation: Brigham and Women's Hospital, Harvard Medial School, Dana-Farber Cancer Institute, Department of Radiation Oncology, Dana Farber/Brigham and Women's Cancer Center, Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Brigham and Womens Hospital, Dana Farber Cancer Institute, Harvard Medical School, Brigham and Women's Hospital, Varian Imaging Laboratory, Dana-Farber Cancer Institute

Abstract Preview: Purpose: A challenge for dual energy CBCT is that noise and residual errors in material decomposition steps can become amplified when forming low energy, high contrast virtual mono-energetic images (V...

A Deep Learning-Based Approach for Rapid Prediction of IMRT/VMAT Patient-Specific Quality Assurance for Online Adaptive Plans Generated with a 0.35T MR-Linac

Authors: Suman Gautam, Tianjun Ma, William Song

Affiliation: Virginia Commonwealth University

Abstract Preview: Purpose: We propose an artificial intelligence (AI)-based method to rapidly predict the patient-speciïŹc quality assurance (PSQA) results for magnetic resonance (MR)-guided online adaptive radiation th...

A Deep Learning-Based Method for Rapid Generation of Spot Weights in Single Field Optimization for Proton Therapy in Prostate Cancer

Authors: Yu Chang, Mei Chen

Affiliation: Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine

Abstract Preview: Purpose: Spot weights optimization, as a critical step in the proton therapy, is often time-consuming and labor-intensive. Deep learning, with its powerful learning and computational efficiency, can e...

A Diffusion-Based AI Framework for Continuous Deformable Image Registration and Time-Resolved Dynamic CT Generation

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Gregory Szalkowski, Qingying Wang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose: Respiratory motion management is crucial for accurate radiation delivery to moving targets while protecting healthy tissue, relying on time-resolved volumetric imaging and continuous deformab...

A Ground Truth Label-Mediated Method for Improved Bone and Gas Cavity Definition for MRI-Guided Online Adaptive Radiotherapy Workflows Using Synthetic CT Images.

Authors: Benito De Celis Alonso, Braian Adair Maldonado Luna, Gerardo Uriel Perez Rojas, René Eduardo Rodríguez-Pérez, Kamal Singhrao

Affiliation: Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Faculty of Physics and Mathematics, Benemérita Universidad Autónoma de Puebla

Abstract Preview: Purpose: Artificial Intelligence (AI)-generated synthetic CT (sCT) images can be used to provide electron densities for dose calculation for online adaptive MRI-guided stereotactic body radiotherapy (...

A Knowledge-Based Approach for High-Quality Accelerated Partial Breast Irradiation Using Stereotactic Body Radiotherapy

Authors: Drexell Hunter Boggs, Carlos E. Cardenas, Allison Dalton, John B Fiveash, Joel A. Pogue, Richard A. Popple, Farnaz Rahim Li

Affiliation: The University of Alabama at Birmingham, University of Alabama at Birmingham

Abstract Preview: Purpose: External-beam Accelerated Partial Breast Irradiation (APBI) using stereotactic-body radiotherapy (SBRT) is increasingly adopted as an alternative to whole-breast radiation, offering targeted ...

A Modular Approach to Reversible and Stackable Medical Imaging Translation Models: CBCT-Based Synthetic MRI with Multiple U-Nets in Series (MUNETs)

Authors: Eric Chang, Nguyen Phuong Dang, Andrew Lim, Lauren Lukas, Lijun Ma, Yutaka Natsuaki, Zhengzheng Xu, Hualin Zhang

Affiliation: Radiation Oncology, Keck School of Medicine of USC

Abstract Preview: Purpose: Harnessed the power of AI and Deep Learning (DL), Generalized Neural Network models for medical image transformation are trained to predict target images from reference images, often requirin...

A Multi-Agent Approach for Fully Automated Nephrometry Feature Extraction in CT

Authors: Matthew S Brown, Joshua Genender, John M. Hoffman, Gabriel Melendez-Corres, Muhammad W. Wahi-Anwar

Affiliation: David Geffen School of Medicine at UCLA, UCLA Department of Radiology

Abstract Preview: Purpose: Renal lesions are evaluated using scoring systems based on visual assessments and manual measurements. The purpose of this work is to develop a multi-agent system for automated anatomic landm...

A Pilot Survey on Medical Physics Residency Education in External Beam Special Procedures

Authors: Courtney R. Buckey, Jay W. Burmeister, Minsong Cao, Grace Chang, Yu Kuang, Yixiang Liao, Yi Rong, Dandan Zheng

Affiliation: Mayo Clinic, Mayo Clinic Arizona, Karmanos Cancer Center, Gershenson ROC, Wayne State University School of Medicine, Department of Radiation Oncology, University of California, Los Angeles, Medical Physics Program, University of Nevada, Rush University Medical Center, University of Rochester

Abstract Preview: Purpose: Investigate the adequacy of training for therapeutic medical physics residents in select special procedures.
Methods: After a review of existing literature, a multi-institutional group dev...

A Recent Evaluation on the Performance of Llms on Radiation Oncology Physics Using Questions of Randomly Shuffled Options

Authors: Dequan Chen, Jason Michael Holmes, Tianming Liu, Wei Liu, Zhengliang Liu, Jiajian Shen, Peilong Wang

Affiliation: Department of Radiology, Mayo Clinic, Department of Radiation Oncology, Mayo Clinic, School of Computing, University of Georgia

Abstract Preview: Purpose:
We present a study to evaluate the performance of large language models (LLMs) in answering radiation oncology physics questions, focusing on the recently released models.
Methods:
A...

A Self-Supervised Deep Learning Approach for Automatic Identification and Metal Artifact Reduction in Cone-Beam CT for Brachytherapy

Authors: Rani Anne', Wenchao Cao, Yingxuan Chen, Wookjin Choi, Firas Mourtada, Yevgeniy Vinogradskiy

Affiliation: Thomas Jefferson University

Abstract Preview: Purpose: In-room mobile cone-beam CT (CBCT) is emerging to enhance high-dose-rate (HDR) brachytherapy workflow using on-demand imaging. However, metal artifacts from X-ray markers inside gynecological...

A Single-View-Based Electroacoustic Tomography Imaging Using Deep Learning for Electroporation Monitoring

Authors: Yankun Lang, Lei Ren, Leshan Sun, Liangzhong Xiang, Yifei Xu, Jie Zhang

Affiliation: University of Maryland School of Medicine, University of California, Irvine

Abstract Preview: Purpose: To achieve the full-view image from a single-view sinogram using a two-stage deep learning model for electroacoustic-tomography (EAT), which is an emerging imaging technique with significant ...

A Tumor Tracking Method in Surface-Guided Radiotherapy

Authors: Penghao Gao, Zejun Jiang

Affiliation: Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Artificial Intelligence Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences

Abstract Preview: Purpose: Real-time tumor tracking can effectively compensate for the impact of respiratory motion on dose distribution. We propose a patient-specific external-internal correlation model driven by opti...

A Vision-Language Model for T1-Contrast Enhanced MRI Generation for Glioma Patients

Authors: Zachary Buchwald, Zach Eidex, Richard L.J. Qiu, Justin R. Roper, Mojtaba Safari, Hui-Kuo Shu, Xiaofeng Yang, David Yu

Affiliation: Emory University and Winship Cancer Institute, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Gadolinium-based contrast agents (GBCA) are commonly used for patients with gliomas to delineate and characterize the brain tumors using T1-weighted (T1W) MRI. However, there is a rising conc...

AI-Based Registration-Free 3T T2-Weighted MRI Synthesis Using Truefisp MRI Acquired on a 0.35T MR-Linac System

Authors: Hilary P Bagshaw, Mark K Buyyounouski, Cynthia Fu-Yu Chuang, Yu Gao, Dimitre Hristov, Lianli Liu, Lawrie Skinner, Lei Xing

Affiliation: Department of Radiation Oncology, Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose:
MR-guided radiation therapy has introduced a significant leap in cancer treatment by allowing adaptive treatment. The low-field MR-guided system predominantly uses the TrueFISP sequence, w...

AI-Based SBRT Dose Prediction Directly from Diagnostic PET/CT: Applications for Multi-Disciplinary Lung Cancer Care

Authors: Pradeep Bhetwal, Wookjin Choi, Adam Dicker, Rupesh Ghimire, Yingcui Jia, Lauren Nkwonta, Yevgeniy Vinogradskiy, Wentao Wang, Maria Werner-Wasik

Affiliation: Thomas Jefferson University

Abstract Preview: Purpose: Multi-disciplinary clinics are becoming standard of care for patients with lung cancer treated with SBRT. To improve clinical decision support in a multi-disciplinary clinic, it would be bene...

AI-Driven Early Detection of Digital Radiography Performance Degradation: A Predictive Quality Control Approach

Authors: Giovanni Iacca, Gloria Miori, Laura Orsingher, Daniele Ravanelli, Annalisa Trianni

Affiliation: Department of Information Engineering and Computer Science, University of Trento, Medical Physics Department, S.Chiara Hospital, APSS

Abstract Preview: Purpose: This study aims to leverage artificial intelligence (AI) to predict and identify performance degradation in Digital Radiography (DR) systems, enabling proactive maintenance and minimizing cli...

AI-Driven Troubleshooting for Truebeam Systems: Development and Testing of a Gpt-4o Chatbot

Authors: Sean P. Devan, Cory S. Knill, Charles K. Matrosic, Zheng Zhang

Affiliation: University of Michigan

Abstract Preview: Purpose: Physicists troubleshooting machine issues during patient treatments often face high-pressure situations, balancing error codes, resource constraints, and time-sensitive decisions. To streamli...

Advancing Biodosimetry with AI: Detecting Dicentric Chromosomes Using Convolutional Neural Networks

Authors: Adayabalam Balajee, Elijah Berberette, Maria Escalona, Dray Gentry, Chester R. Ramsey, Terri Ryan

Affiliation: ORAU, Thompson Proton Center, University of Tennessee

Abstract Preview: Purpose:
Dicentric chromosomes, characterized by two centromeres on a single chromosome, are key biomarkers in biological dosimetry for quantifying ionizing radiation exposure. However, manual dete...

Advancing Ionizing Radiation Acoustic Imaging: A Deep Learning Approach for Denoising and Quantitative Reconstruction

Authors: Kyle Cuneo, Issam M. El Naqa, Dale W. Litzenberg, Yiming Liu, Xueding Wang, Lise Wei, Wei Zhang, Jiaren Zou

Affiliation: University of Michigan, H. Lee Moffitt Cancer Center

Abstract Preview: Purpose: To quantitatively map 3D dose deposition during radiotherapy, empowering real-time adaptive radiation treatment.

Methods: The research features reconstructing dose deposition from acou...

Adversarial Diffusion-Based Self-Supervised Learning for High-Resolution MR Imaging

Authors: Zachary Buchwald, Chih-Wei Chang, Zach Eidex, Richard L.J. Qiu, Mojtaba Safari, Shansong Wang, Xiaofeng Yang, David Yu

Affiliation: Emory University and Winship Cancer Institute, Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: MRI offers excellent soft tissue contrast for diagnosis and treatment but suffers from long acquisition times, causing patient discomfort and motion artifacts. To accelerate MRI, supervised d...

Advocating for Survival Prediction Models in Risk Stratification for Cancer Treatment Outcomes

Authors: Meixu Chen, Jing Wang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center

Abstract Preview: Purpose: Cancer treatment outcome prediction plays a pivotal role in guiding therapeutic decisions and optimizing patient care. Traditionally, binary prediction models have been widely used for risk s...

An Adaptive Radiotherapy Strategy Study Based on Segmented Synthesis and Deformational Registration

Authors: Jie Hu, Zhengdong Jiang, Nan Li, Tie Lv, Yuqing Xia, Shouping Xu, Gaolong Zhang, Wei Zhao, Changyou Zhong

Affiliation: School of Physics, Beihang University, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Radiotherapy Department of Meizhou People’s Hospital (Huangtang Hospital), UT Health San Antonio, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PeopleÊŒs Republic of China, Department of Radiation Oncology

Abstract Preview: Purpose: Patients usually undergo cone-beam computed tomography (CBCT) scans which are used for patient set-up before radiotherapy. However, the low image quality of CBCT hinders its use in adaptive r...

An Efficient Deep Learning Model with Multi-Scale Integration for Automated Pancreas Segmentation on MR Images

Authors: Jingyun Chen, Yading Yuan

Affiliation: Columbia University Irving Medical Center, Department of Radiation Oncology

Abstract Preview: Purpose: To develop and evaluate the Scale-attention network (SANet) for automated pancreas segmentation on MR images.
Methods: To develop SANet, we extended the classic U-Net design with a dynamic...

Assessing the Risks of Synthetic MRI Data in Deep Learning: A Study on U-Net Segmentation Accuracy

Authors: Chuangxin Chu, Haotian Huang, Tianhao Li, Jingyu Lu, Zhenyu Yang, Fang-Fang Yin, Tianyu Zeng, Chulong Zhang, Yujia Zheng

Affiliation: The Hong Kong Polytechnic University, Nanyang Technological University, Australian National University, Medical Physics Graduate Program, Duke Kunshan University, North China University of Technology, Duke Kunshan University

Abstract Preview: Purpose: Deep learning segmentation models, such as U-Net, rely on high-quality image-segmentation pairs for accurate predictions. However, the recent increasing use of generative networks for creatin...

Attention-Based Multiple Instance Learning of Head and Neck Cancer Grading on Digital Pathology Using Vision-Language Foundational Models

Authors: Kyle J. Lafata, Xiang Li, Megan K. Russ, Zion Sheng

Affiliation: Duke University, Department of Radiation Oncology, Duke University, Clinical Imaging Physics Group, Department of Radiology, Duke University Health System

Abstract Preview: Purpose: To adapt Vision-Language Foundational Models (VLFM) to perform HNSCC tumor grading on H&E whole slide images (WSI) via attention-based multiple instance learning (ABMIL).
Methods: We utili...

Automated Framework for Predicting Tumour Growth in Vestibular Schwannomas Using Contrast-Enhanced T1-Weighted MRI

Authors: Mehdi Amini, Minerva Becker, Simina Chiriac, Alexandre Cusin, Dimitrios Daskalou, Ghasem Hajianfar, Sophie Neveu, Marcella Pucci, Yazdan Salimi, Pascal Senn, Habib Zaidi

Affiliation: Geneva University Hospital, Division of Radiology, Diagnostic Department, Geneva University Hospitals, Service of Otorhinolaryngology-Head and Neck Surgery, Department of Clinical Neurosciences, Geneva University Hospitals

Abstract Preview: Purpose: Personalized prediction of vestibular schwannoma (VS) tumour growth is crucial for guiding patient management decisions toward observation versus intervention. This study proposes an automate...

Automated Full-Body Tumor Segmentation from PET/CT Images

Authors: Austin Castelo, Xinru Chen, Caroline Chung, Laurence Edward Court, Jaganathan A Parameshwaran, Zhan Xu, Jinzhong Yang, Yao Zhao

Affiliation: The University of Texas MD Anderson Cancer Center, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center

Abstract Preview: Purpose:
To develop a deep learning-based segmentation model to automatically delineate tumors from full-body PET/CT images.
Methods:
PET/CT image pairs of 91 patients were collected for this...

Automated MR Segmentation for Online Adaptive MR-Linac Therapy Using an in-House Model

Authors: David L. Barbee, David Byun, Matt Long, Jose R. Teruel Antolin, Michael J Zelefsky

Affiliation: NYU Langone Health

Abstract Preview: Purpose:
Online adaptive MR-Linac therapy requires contour adaptation, often adding 20 minutes to treatment time and reducing machine throughput. This study introduces a fully automated MR contour ...

Automated Treatment Planning for Linac-Based Stereotactic Radiosurgery of Intraocular Malignancies Via Hyperarc Knowledge-Based Planning

Authors: Chase Cochran, Shane McCarthy, Damodar Pokhrel, William St Clair

Affiliation: University of Kentucky, Department of Radiation Medicine, University of Kentucky, Radiation Medicine

Abstract Preview: Purpose: Manually generating intraocular stereotactic radiosurgery (SRS) plans involves significant challenges, including lengthy planning times and inter-planner variability. Knowledge-based SRS plan...

Automatic 4D Lung PET-CT Segmentation Using Hybrid Deep Neural Network

Authors: Hongyi Jiang, Fang-Fang Yin

Affiliation: Duke University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose:
Imaging moving tissues using PET-CT can be difficult. Separating signal into phases during construction reduces signal count and increases influence of noise. Algorithms that use signal fr...

Automatic Contour Quality Assurance Using Deep-Learning Based Contours

Authors: Laurence Edward Court, Raphael Douglas, David Fuentes, Anuja Jhingran, Barbara Marquez, Raymond Mumme, Christine Peterson, Julianne M. Pollard-Larkin, Surendra Prajapati, Dong Joo Rhee, Thomas J. Whitaker

Affiliation: MD Anderson Cancer Center, The University of Texas MD Anderson Cancer Center, MD Anderson, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center

Abstract Preview: Purpose: Safe deployment of auto-contouring models requires the inclusion of automated quality assurance (QA). One approach is to use an independent auto-contouring model and compare the contours geom...

Automatic Tumor Segmentation and Catheter Detection from MRI for Cervical Cancer Brachytherapy Using Uncertainty-Aware Dual Convolution-Transformer Unet

Authors: Majd Antaki, Rohini Bhatia, Gayoung Kim, Yosef Landman, Junghoon Lee, Akila N. Viswanathan

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Physics and Advanced Development Elekta

Abstract Preview: Purpose: Brachytherapy is a standard radiation therapy approach for cervical cancer, which directly delivers radiation source to the tumor using catheters. Treatment planning requires identification o...

BEST IN PHYSICS MULTI-DISCIPLINARY: Motion-Resolved Dynamic CBCT Reconstruction Using Prior-Model-Free Spatiotemporal Gaussian Representation (PMF-STGR)

Authors: Hua-Chieh Shao, Chenyang Shen, Jiacheng Xie, Shunyu Yan, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, The University of Texas at Dallas

Abstract Preview: Purpose: Motion-resolved CBCT imaging, which reconstructs a dynamic sequence of CBCTs reflecting intra-scan motion (one CBCT per x-ray projection), is highly desired for regular/irregular motion chara...

Biomechanically Informed Diagnostic-to-Synthetic CT Transformation for Expedited Radiation Therapy Planning

Authors: Liyuan Chen, Steve Jiang, Chenyang Shen

Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center

Abstract Preview: Purpose: Delays in radiation therapy (RT) initiation caused by conventional CT simulation processes can hinder timely treatment delivery and patient outcomes. This study proposes a Virtual Treatment S...

Box-Prompt Zero-Shot Smart Segmentation in Radiation Oncology Using a SAM-Based Model: Smartsam

Authors: Kristen A. Duke, Samer Jabor, Neil A. Kirby, Parker New, Niko Papanikolaou, Arkajyoti Roy, Yuqing Xia

Affiliation: St. Mary's University, The University of Texas San Antonio, UT Health San Antonio

Abstract Preview: Purpose:
The Segment Anything Model (SAM) is a foundational box-prompt-based model for natural image segmentation. However, its applicability to zero-shot 3D medical image segmentation, particularl...

Brain Vessel Segmentation and Tracking in Longitudinal Glioblastoma MRI Scans

Authors: Evan Calabrese, Edward Robert Criscuolo, Deshan Yang

Affiliation: Duke University, Department of Radiation Oncology, Duke University

Abstract Preview: Purpose: Glioblastoma (GBM) is the most common and aggressive form of brain cancer. Deformable image registration (DIR) is a powerful tool to compute anatomical changes in longitudinal MRI scans, whic...

CNN-Based Reconstruction for 3D Scintillation Dosimetry of Proton Pencil Beams

Authors: Sam Beddar, Jason Michael Holmes, Daniel G. Robertson, James J. Sohn, Ethan D. Stolen

Affiliation: Department of Radiation Oncology, Mayo Clinic, MD Anderson Cancer Center, Department of Radiation & Cellular Oncology, University of Chicago, Department of Radiation and Cellular Oncology, University of Chicago

Abstract Preview: Purpose: Camera-based scintillation dosimetry incorporating large volumes have shown promise for fast and comprehensive evaluation of external beam treatment fields. While some efforts have been made ...

CT-Free PET Imaging: Synthetic CT Generation for Efficient and Accurate PET-Based Planning

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose:
PET is used in radiotherapy workflows for accurate target delineation. However, a separate CT scan is typically required for attenuation correction in PET imaging and for registering PET-d...

Cerebellar Mutism Syndrome Prediction with 3D Residual Convolutional Neural Network

Authors: Sahaja Acharya, Matthew Ladra, Junghoon Lee, Lina Mekki, Bohua Wan

Affiliation: Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Department of Biomedical Engineering, Johns Hopkins University, Department of Computer Science, Johns Hopkins University

Abstract Preview: Purpose: Cerebellar mutism syndrome (CMS) is the most frequently observed complication in children undergoing surgical resection of posterior fossa tumors. Previous work explored lesion to symptom map...

Clinical Validation of AI-Driven Segmentation Model for Pediatric Craniospinal Irradiation: Marked Reduction in Contouring Time and Enhanced Workflow Efficiency

Authors: Alexander Choi, William Ross Green, Christine Hill-Kayser, Gary D. Kao, Michael LaRiviere, Rafe A. McBeth, Steven Philbrook

Affiliation: Department of Radiation Oncology, University of Pennsylvania

Abstract Preview: Purpose: To validate the potential of clinical deployment of an in-house AI-driven auto-segmentation tool for pediatric craniospinal irradiation (CSI) in proton therapy, with goals of reducing manual ...

Clinical Validation of a Deep-Learning Segmentation Tool for Head and Neck Cancer Patients and Thoracic and Abdominal Cancer Patients

Authors: Haijian Chen, Katja M. Langen, William Andrew LePain, Claire Tran, Mingyao Zhu

Affiliation: Emory Healthcare, Emory University, Georgia Institute of Technology

Abstract Preview: Purpose: To validate the performance of a commercial deep-learning segmentation (DLS) tool for head and neck cancer (HNC) and thoracic and abdominal cancer (TAC) by comparing it to manual segmentation...

Combining Patch-Based CNN Models with Hierarchical Shapley Explanations for Breast Cancer Diagnosis

Authors: Xuelian Chen, John Ginn, Zhuhong Li, Kaizhong Shi, Chunhao Wang, Jianliang Wang, Chuan Wu, Zhenyu Yang, Fang-Fang Yin, Jingtong Zhao

Affiliation: The First People's Hospital of Kunshan, Duke University, Medical Physics Graduate Program, Duke Kunshan University, Duke Kunshan University, Department of Radiation Oncology, Duke Kunshan University

Abstract Preview: Purpose: Developing deep learning-based models for accurate automated breast cancer diagnosis from mammography presents significant challenges due to the small size and subtle nature of breast lesions...

Comparative Analysis of Nine Deep Learning Architectures for Variable Density Grappa 1H Magnetic Resonance Spectroscopy Imaging (MRSI) Reconstruction

Authors: Kimberly Chan, Anke Henning, Mahrshi Jani, Andrew Wright, Xinyu Zhang

Affiliation: Advanced Imaging Research Center (AIRC), UT Southwestern Medical Center

Abstract Preview: Purpose: To evaluate the performance of multiple deep learning architectures for MRSI reconstruction and determine their effectiveness in maintaining high-resolution metabolite mapping while reducing ...

Comparative Evaluation of Nn-Unet Models for Radiotherapy Dose Prediction Using the Head and Neck Cancer Patients

Authors: Theodore Higgins Arsenault, Beatriz Guevara, Rojano Kashani, Raymond F. Muzic, Gisele Castro Pereira, Alex T. Price

Affiliation: University Hospitals Seidman Cancer Center, Case Western Reserve University Department of Biomedical Engineering

Abstract Preview: Purpose: Accurate dose prediction in radiotherapy is essential for treatment planning. This study evaluates four nnUnet-based models using the OpenKBP head and neck dataset: a baseline model (Model 1)...

Comparison of Radiomic Feature Normalizations, Feature Selection, and Modeling with Different Datasets

Authors: Eric N Carver, Julia Marks

Affiliation: Brown University

Abstract Preview: Purpose: The clinical applicability of radiomic features is hindered by challenges in stability and reproducibility. To address this, researchers are establishing image and feature standardizations an...

Comprehensive Evaluation of Federated Learning Strategies for Head and Neck Tumor Segmentation on PET/CT Images

Authors: Jingyun Chen, Yading Yuan

Affiliation: Columbia University Irving Medical Center, Department of Radiation Oncology

Abstract Preview: Purpose: To evaluate centralized and decentralized strategies for federated head and neck tumor segmentation on PET/CT.
Methods: We utilized training data from the HEad and neCK TumOR segmentation ...

Construction and Application Study of a Deep Learning-Based Iscout-Guided Precision Radiotherapy Positioning Error Prediction Model for Breast Cancer

Authors: Fangfen Dong, Jiaming Li, Xiaobo Li, Weipei Wang, Zhixin Wang, Bing Wu, Benhua Xu, Yong Yang, Yifa Zhao

Affiliation: Department of Radiation Oncology, Fujian Medical University Union Hospital/Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors/Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematologi, Zhangpu County Hospital, School of Medical Imaging, Fujian Medical University

Abstract Preview: Purpose: To explore the construction and clinical application value of a deep learning-based positioning error prediction model, providing a reference for optimizing iSCOUT system-guided precision rad...

Continuous Professional Development for Medical Physicists on AI Principles from the User's Perspective.

Authors: Mauro Carrara, Olivera Ciraj Bjelac, John E. Damilakis, Andre L. Dekker, Serafina Di Gioia, Renato Padovani, Egor Titovich, Qingrong Jackie Wu

Affiliation: University of Crete, Duke University Medical Center, Maastro Clinic, Dosimetry and Medical Radiation Physics Section, Division of Human Health, International Atomic Energy Agency, International Centre for Theoretical Physics

Abstract Preview: Purpose: The purpose of this work is to present the International Atomic Energy Agency (IAEA) activity in providing medical physicists (MPs) with knowledge, skills, and competencies to support the saf...

Contrast-Free Full Intracranial Vessel Geometry Estimation from MRI with Metric Learning-Based Inference

Authors: Zhaoyang Fan, Eric Nguyen, Dan Ruan, Jiayu Xiao

Affiliation: Department of Radiation Oncology, University of California, Los Angeles, Department of Radiology, University of Southern California, University of Southern California

Abstract Preview: Purpose: MR vessel wall imaging (VWI) has been shown to be effective for evaluating intracranial atherosclerosis disease. However, VWI typically also requires an MR angiography (MRA) in the same imagi...

Cycle-Consistent Multi-Task Automated Segmentation and Synthetic CT Generation Model for Adaptive Proton Therapy

Authors: Derek Tang, Susu Yan

Affiliation: Massachusetts General Hospital

Abstract Preview: Purpose: To evaluate the performance of a multi-task automated-segmentation and synthetic CT generation model (sCT) and investigate its application in an adaptive proton therapy workflow.
Methods: ...

Data-Driven Forward Projector for Optimization of the Proton Stopping Power Calibration in Treatment Planning Based on Sparse Proton Radiographies

Authors: Hector Andrade-Loarca, Ines Butz, Chiara Gianoli, Prof. Gitta Kutyniok, Jianfei Li, Katia Parodi, Prof. Vincenzo Patera, Angelo Schiavi, Prof. Ozan Öktem

Affiliation: Sapienza University of Rome, Department of Mathematics, Royal Institute of Technology, School of Computation, Information and Technology, Technische Universitaet Muenchen, Department of Medical Physics, Ludwig-Maximilians-UniversitĂ€t MĂŒnchen (LMU Munich), Department of Mathematics, Ludwig-Maximilians-UniversitĂ€t (LMU) MĂŒnchen, Department of Medical Physics, Ludwig-Maximilians-UniversitĂ€t (LMU) MĂŒnchen

Abstract Preview: Purpose: To explore and demonstrate the feasibility of accurate and fast prediction of the water equivalent thickness (WET) distribution of tissue traversed by a proton imaging pencil beam, aiming at ...

Deep Learning-Based Auto-Segmentation in Cervical High-Dose-Rate Brachytherapy with Clinical Considerations

Authors: Benjamin Haibe-Kains, Ruiyan Ni, Alexandra Rink

Affiliation: Department of Medical Biophysics, University of Toronto, University Health Network

Abstract Preview: Purpose: Accurate auto-segmentation for targets and organs-at-risk (OARs) using deep learning reduces the delineating time in radiotherapy. In high-dose-rate brachytherapy, specific clinical criteria ...

Deep Learning-Based Multileaf Collimator Sequence Prediction for Automated VMAT Treatment Planning in Pancreatic Cancer

Authors: Zixu Guan, Takahiro Iwai, Takashi Mizowaki, Mitsuhiro Nakamura, Michio Yoshimura

Affiliation: Kyoto University, Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University

Abstract Preview: Purpose:
The goal of this study is to develop a fully automated treatment planning approach for VMAT in pancreatic cancer that can convert patient anatomy into LINAC machine parameters. In this wor...

Deep Learning-Based Segmentation Using Cine Epid Images for Real-Time Tumor Monitoring

Authors: Fumiaki Komatsu, Shunsuke Moriya, Ryosuke Nakamura, Takeji Sakae, Toshiyuki Terunuma, Tetsuya Tomita

Affiliation: Graduate School of Comprehensive Human Sciences, University of Tsukuba, Institute of Medicine, University of Tsukuba, Proton Medical Research Center, University of Tsukuba, Department of Radiology, University of Tsukuba Hospital

Abstract Preview: Purpose: To develop a deep learning (DL) model capable of accurately tracking lung tumors independent of beam angle variations.
Methods: A thoracic dynamic phantom simulating lung motion in the sup...

Deep Learning-Driven Comparative Analysis of CNN-Based Architectures and High-Order Vision Mamba U-Net (H-vMUNet) for MRI-Based Brain Tumor Segmentation

Authors: Sang Hee Ahn, Nalee Kim, Do Hoon Lim

Affiliation: Samsung Medical Center, Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine

Abstract Preview: Purpose: MRI offers superior soft-tissue contrast, aiding tumor localization and segmentation in radiation therapy, which traditionally relies on oncologists' expertise. This study compares CNN-based ...

Deep-Learning Convolutional Neural Network-Based Breast Cancer Localization for Mammographic Images: A Study on Simulated and Clinical Images

Authors: Xiaoyu Duan, Xiang Li, Wenbo Wan, Lei Zhang, Yiwen Zhang

Affiliation: Duke University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Breast screening has been proved to reduce breast cancer mortality by early detection and treatment for patients. Mammography is the most common and widely used technique for breast cancer sc...

Demographic Attributes of the Train-Test Sets and Their Impact on AI Performance: Medical Imaging Applications

Authors: Maryellen L. Giger, Fahd Hatoum, Robert Tomek, Heather M. Whitney

Affiliation: The University of Chicago

Abstract Preview: Purpose: To assess the importance of applying stratified sampling across demographic attributes (including age, sex, race, and ethnicity) when constructing training and testing datasets for ML-based d...

Deployable Twin-Calorimeter System for Absolute Dose Measurements By Clinical Physicists

Authors: Jean Dessureault, Malcolm R. McEwen, Bryan R. Muir, James Renaud

Affiliation: National Research Council

Abstract Preview: Purpose: To develop and commission a mailable calorimeter that enables clinical medical physicists to quickly and efficiently address innovative dosimetry challenges directly at the point of use.
<...

Determine Noise Weighting Factor in Photon-Counting CT Via Deep Learning for Personalized Noise Reduction

Authors: Xinhui Duan, Roderick W. McColl, Mi-Ae Park, Liqiang Ren, Gary Xu, Kuan Zhang, Yue Zhang

Affiliation: UT Southwestern Medical Center, Department of Radiology, UT Southwestern Medical Center, Imaging Services, UT Southwestern Medical Center

Abstract Preview: Purpose:
Image-based deep-learning noise-reduction techniques have been developed for photon-counting CT (PCCT) to improve image quality with reduced radiation dose. The denoising strength is typic...

Developing an AI-Driven Predictor for Forecasting Treatment Outcomes in Patients with Early-Stage Breast Cancer

Authors: Lucy Jiang, Chengyu Shi

Affiliation: Department of Radiation Oncology, City of Hope Orange County, Amity Regional High School (10th Grade)

Abstract Preview: Purpose: Early-stage breast cancer is common among females, with typically high local tumor control rates (LCR). Brachytherapy is a common way to achieve LCR following surgery. However, the patients m...

Developing and Evaluating the First Pre-Treatment Physics Plan Checklist for Error Detection in Biology-Guided Radiotherapy (BgRT)

Authors: Michael Burke, David J. Carlson, Yiu-Hsin Chang, Huixiao Chen, Zhe (Jay) Chen, Emily A. Draeger, Dae Yup Han, Vanessa Hill, Ann-Teresa Jasman, John Kim, Svetlana Kuznetsova, MinYoung Lee, Daniel Longo, Henry S. Park, Adam Shulman, Lauren Tressel, Weili Zhong

Affiliation: Department of Therapeutic Radiology, Yale University School of Medicine

Abstract Preview: Purpose:
The complexity of biology-guided radiotherapy (BgRT), particularly with systems like RefleXion X1, necessitates robust pre-treatment quality assurance (QA) to ensure patient safety, treatm...

Development and Validation of Novel Two-Stage Vascular Segmentation Model for Interventional Angiography

Authors: Abid Khan, Chad Klochko, Michael J Kovalchick, Hyeok Jun Lee, Hani Nasr, Krishnan Shyamkumar, Kundan S Thind

Affiliation: Henry Ford Radiology, Wayne State University, Henry Ford Health, HFHS

Abstract Preview: Purpose: Automated vascular segmentation in interventional angiography is challenged by contrast kinetics, vessel variations, and 2D projections, limiting the effectiveness of single-model approaches....

Development and Validation of a Principal Component Analysis Statistical Shape Pediatric/Adolescent Breast Model for Pre-CT Era Breast Dose Reconstruction in Late Effect Studies of Female Childhood Cancer Survivors

Authors: Gregory T. Armstrong, James E. Bates, Kristy K. Brock, Laurence Edward Court, Matt Ehrhardt, Danielle Friedman, Aashish C. Gupta, Donald Hancock, Rebecca M. Howell, Cindy Im, Tera S Jones, Choonsik Lee, Wendy Leisenring, Taylor Meyers, Lindsay Morton, Chaya Moskowitz, Joe Neglia, Vikki Nolan, Caleb O'Connor, Kevin C. Oeffinger, Constance A. Owens, Arnold C. Paulino, Chelsea C. Pinnix, Sander Roberti, Cecile Ronckers, Susan A. Smith, Kumar Srivastava, Lucie Turcotte

Affiliation: Department of Medicine, Duke University School of Medicine, Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, The University of Texas MD Anderson Cancer Center, Department of Oncology, St. Jude Children’s Research Hospital, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, Division of Pediatric Epidemiology and Clinical Research, University of Minnesota, Division of Childhood Cancer Epidemiology, University Medicine at Johannes Gutenberg University Mainz, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Department of Pediatrics, University of Minnesota, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Department of Biostatistics, St. Jude Children’s Research Hospital, Clinical Research Division, Fred Hutchinson Cancer Center, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Department of Radiation Oncology and Winship Cancer Institute, Emory University, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences

Abstract Preview: Purpose: To (1) develop and validate a novel anatomically realistic pediatric/adolescent population-based breast model, (2) incorporate model into an age-scalable female reference phantom, and (3) dem...

Development of a Knowledge-Based Planning Model for Intensity Modulated Proton Therapy in Breast Cancer Treatment

Authors: Parker Anderson, Elizabeth L. Bossart, Jonathan Cyriac, Nesrin Dogan, Robert Kaderka, Yihang Xu

Affiliation: University of Miami, University of Miami, Sylvester Comprehensive Cancer Center, University of Miami Sylvester Comprehensive Cancer Center

Abstract Preview: Purpose:
Knowledge-based planning (KBP) can enhance the treatment planning process in cancer radiotherapy (RT). By training a KBP model with high-quality treatment plans developed by experts, dose-...

Development of a Knowledge-Based Planning Model for Optimal Trade-Off Guidance in Locally Advanced Non-Small Cell Lung Cancer

Authors: Ming Chao, Hao Guo, Tenzin Kunkyab, Yang Lei, Tian Liu, Kenneth Rosenzweig, Robert Samstein, James Tam, Junyi Xia, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai

Abstract Preview: Purpose:
The aim of the study is to develop a trade-off prediction model to efficiently guide the treatment planning process for patients with stage III non-small cell lung cancer (NSCLC).
Metho...

Development of a Method to Standardize Multi-Institutional Quality Assurance Data through an AI Based Language Model Ontology.

Authors: Rafe A. McBeth, Ayoola Okuribido, Rodney D. Wiersma

Affiliation: Department of Radiation Oncology, University of Pennsylvania, University of Pennsylvania, UCLA

Abstract Preview: Purpose: To develop a method for standardizing data collected during quality assurance checks across institutions using language models.
Background: QA procedures and data management can vary widel...

Development of a Method to Standardize Multi-Instiutional Quality Assurance Data through an AI Based Language Model Ontology.

Authors: Rafe A. McBeth, Ayoola Okuribido, Rodney D. Wiersma

Affiliation: Department of Radiation Oncology, University of Pennsylvania, University of Pennsylvania, UCLA

Abstract Preview: Purpose: To develop a method for standardizing data collected during quality assurance checks across institutions using language models.
Background: QA procedures and data management can vary widel...

Do We Need Pediatric-Specific Models for Radiotherapy Auto-Contouring? a Comparative Study of Pediatric and Adult-Trained Tools

Authors: Gregory T. Armstrong, James E. Bates, Christine V. Chung, Lei Dong, Ralph Ermoian, Jie Fu, Christine Hill-Kayser, Rebecca M. Howell, Meena S. Khan, Sharareh Koufigar, John T. Lucas, Thomas E. Merchant, Taylor Meyers, Tucker J. Netherton, Constance A. Owens, Arnold C. Paulino, Sogand Sadeghi

Affiliation: Department of Radiation Oncology, University of Washington and Fred Hutchinson Cancer Center, Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, St. Jude Children's Research Hospital, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Department of Radiation Oncology, St. Jude Children’s Research Hospital, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, University of Washington/ Fred Hutchinson Cancer Center, Department of Radiation Oncology, University of Pennsylvania, University of Pennsylvania, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Department of Radiation Oncology and Winship Cancer Institute, Emory University, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences

Abstract Preview: Purpose: Clinical workflows often rely on auto-segmentation tools trained on adult data, which may exhibit suboptimal performance in pediatric imaging due to inherent anatomical variations and smaller...

Dysphagia Optimized Knowledge-Based Planning for Head and Neck Cancer

Authors: James E. Bates, Benjamin Hopkins, Kirk Luca, Shadab Momin, Justin R. Roper, Soumon Rudra, Eduard Schreibmann, Bill Stokes, Tu Thi, Xiaofeng Yang

Affiliation: Emory University, Department of Radiation Oncology and Winship Cancer Institute, Emory University

Abstract Preview: Purpose: Swallowing dysfunctions after radiotherapy are caused by multiple factors yet are strongly associated with the irradiation of pharyngeal musculature due to its role in the initiation and comp...

Enhance Four-Dimension Cone-Beam Computed Tomography (4D-CBCT) from Sparse Views Using a Novel Deep Learning Model

Authors: Lei Ren, Jie Zhang

Affiliation: University of Maryland School of Medicine

Abstract Preview: Purpose: 4D-CBCT is valuable for imaging anatomy affected by respiratory motions to guide radiotherapy delivery. However, 4D-CBCT often has undersampled projections acquired in each respiratory phase ...

Enhanced Prediction of Iroc Stereotactic Radiosurgery Phantom Audit Results with Treatment Parameters, Complexity Metrics, DVH, and Dosiomics Using Machine Learning

Authors: Lian Duan, Stephen F. Kry, Hunter S. Mehrens, Christine Peterson, Paige A. Taylor

Affiliation: The University of Texas MD Anderson Cancer Center, UT MD Anderson Cancer Center

Abstract Preview: Purpose: To develop predictive models for IROC SRS head phantom audits and to identify important factors influencing institutional performance.
Methods: The IROC SRS head phantom includes two TLDs ...

Enhanced Predictive Model for Toxicity and 3-Year Survival in HCC Patients Using Learning Health System Infrastructure and AI-Driven Statistical Profiling

Authors: Ameer Elaimy, Theodore Lawrence, Charles S. Mayo, Seyyedeh Azar Oliaei Motlagh, Benjamin S. Rosen

Affiliation: University of Michigan

Abstract Preview: Purpose: To analyze the impact of clinical features on short-term survival, toxicity, and poor outcomes in HCC patients treated with SBRT,using automated data aggregation and enhanced algorithms with ...

Establishing Radiotherapy in Malawi through an International Medical Physics Collaboration

Authors: Ruth Afanador, Daniela Branco, John M Bryant, John Campbell, Clement Chaphuka, Samuel A. Einstein, David B. Flint, Jeffrey R. Kemp, Mussa Kumwembe, Daniel J Mollura, Joseph Weygand

Affiliation: RAD-AID International, The University of Texas MD Anderson Cancer Center, Department of Radiation Oncology and Applied Science, Dartmouth Health, UNC Health, Malawi National Cancer Center, Kamuzu Central Hospital, Penn State College of Medicine, Sutter Health, New York University, University of California San Diego / California Protons, Department of Radiation Oncology, Moffitt Cancer Center

Abstract Preview: Purpose: Malawi, a landlocked country in southeastern Africa with a population of over 20 million, ranks among the world’s least-developed nations and has the fourth-lowest gross domestic product per ...

Estimation of Heart Dose in Left Breast Cancer Radiotherapy: Assessment of Vdibh Feasibility Using the Supervised Machine Learning Algorithm

Authors: Rajeev Gupta, Shriram Ashok Rajurkar, Teerthraj Verma

Affiliation: King George's Medical University, King George's Medical University, UP

Abstract Preview: Purpose:
The volunteer deep inspiration breath hold (vDIBH) technique is used to reduce the heart dose in left breast cancer radiotherapy. Many times, it is faced that despite rigorous exercise and...

Evaluation of an Adaptive Denoising Diffusion Probabilistic Model (DDPM) for Fast MRI in Radiotherapy Planning of Pediatric Brain Tumors

Authors: Chia-Ho Hua, Jirapat Likitlersuang, Jinsoo Uh

Affiliation: St. Jude Children's Research Hospital

Abstract Preview: Purpose: AI-based fast MRI, which reconstructs images from undersampled k-space data, has not yet been tailored for RT planning. This study aims to evaluate the fast MRI performance of our recently pr...

Fast 3D Scintillation Dosimetry Using Single View Deep Learning Reconstruction

Authors: Louis Archambault, Nicolas Drouin, Alexis Horik, Simon Thibault

Affiliation: Département de Physique, de Génie Physique et D'optique, et Centre de Recherche sur le Cancer, Université Laval, Département de Physique, de Génie Physique et D'optique, et Centre d'optique, photonique et laser, Université Laval

Abstract Preview: Purpose: To develop a novel type of real-time 3D dosimeter for the quality assurance of linear accelerators used in external beam radiotherapy.
Methods: An experimental setup was constructed using ...

Feasibility of Using a Convolutional Neural Network to Predict Physician Evaluation of Synthetic Medical Images

Authors: Sofia Beer, Menal Bhandari, Alec Block, Nader Darwish, Joseph Dingillo, Sebastien A. Gros, Hyejoo Kang, Andrew Keeler, Rajkumar Kettimuthu, Jason Patrick Luce, Ha Nguyen, John C. Roeske, George K. Thiruvathukal, Austin Yunker

Affiliation: Data Science and Learning Division, Argonne National Laboratory, Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Stritch School of Medicine Loyola University Chicago, Cardinal Bernardin Cancer Center, Loyola University Chicago, Department of Computer Science, Loyola University of Chicago

Abstract Preview: Purpose: Artificial intelligence (AI) generated synthetic medical images are seeing increased use in radiology and radiation oncology. Physician observer studies are an ideal way to evaluate the usabi...

Follow-the-Leader Framework for Adaptable Target Segmentation in Radiotherapy

Authors: Mingli Chen, Xuejun Gu, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose: This study introduces a novel template-guided deep learning framework for primary gross tumor volume (GTVp) segmentation, addressing challenges posed by diverse tumor types and enabling a uni...

Foundation Models with Balanced Data Sampling Enhance Auto-Segmentation for Cardiac Substructures

Authors: Chloe Min Seo Choi, Nikhil Mankuzhy, Aneesh Rangnekar, Andreas Rimner, Maria Thor, Harini Veeraraghavan, Abraham Wu

Affiliation: Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Cardiac substructure irradiation predisposes patients for poor outcomes in thoracic radiation therapy. A deep learning model was developed to segment the cardiac substructures invariant to co...

Gaze Angle Selection in Proton Therapy for Ocular Tumors with Machine Learning

Authors: Ling Chen, Alexei V. Trofimov, Yi Wang, Dufan Wu

Affiliation: Massachusetts General Hospital, MGH

Abstract Preview: Purpose:
Selecting gaze angles of the eye is an important part of set-up of proton therapy for ocular tumors, ensuring that the treatment beam could irradiate the tumor while maximally sparing impo...

Generating Brain Pseudo-CT from PET-Only Images Using Deep Learning Method

Authors: Pouya Azarbar, Nima Kasraie, Mahsa Shahrbabki Mofrad, Peyman Sheikhzadeh

Affiliation: UT Southwestern Medical Center, Shahid Beheshti University of Medical science, Imam Khomeini Hospital Complex,Tehran University of Medical Sciences, Tehran University of Medical Science

Abstract Preview: Purpose: PET imaging become crucial in diagnosing and managing various diseases, but its key limitation is the lack of detailed anatomical information. Integrating CT-scans with PET images enhances cl...

Generating Synthetic Positron Emission Tomography from Computed Tomography Using Lightweight Diffusion Model for Head and Neck Cancer

Authors: Rashmi Bhaskara, Shravan Bhavsar, Ananth Grama, Oluwaseyi Oderinde, Shourya Verma

Affiliation: Purdue University

Abstract Preview: Generating Synthetic Positron Emission Tomography from Computed Tomography using Lightweight Diffusion Model for Head and Neck Cancer
Purpose: To generate synthetic PET tumor avidity segments direc...

Generation of Virtual Lung PET Images from CT Data Via Deep Learning for Accelerated Tumor Detection and Preliminary Diagnosis

Authors: Pouya Azarbar, Nima Kasraie, Peyman Sheikhzadeh

Affiliation: UT Southwestern Medical Center, Shahid Beheshti University of Medical science, Imam Khomeini Hospital Complex,Tehran University of Medical Sciences

Abstract Preview: Purpose: Positron Emission Tomography (PET) is crucial for diagnosing and monitoring diseases due to its functional imaging capabilities. However, its high cost, significant radiation exposure, and li...

Geographic Disparities in Medical Physics Training and Employment: Implications for Rural Workforce Recruitment

Authors: Seth Amofa, Erli Chen, Samuel A. Einstein, Ekinadoese Imudia Frias, Nupur Karmaker, Yinus Kawthara, Dulguun Myagmarsuren, Travis C. Salzillo, Joseph Weygand, Afua A. Yorke

Affiliation: Department of Radiation Oncology and Applied Science, Dartmouth Health, University of Washington, Federal University Oye-Ekiti, Cheshire Medical Center, Dartmouth College, Penn State College of Medicine, Dept. of Medical Physics and Biomedical Engineering, Gono Bishwabidyalay, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Virginia Tech Carilion School of Medicine

Abstract Preview: Purpose: Recent developments in the medical physics job market have made it increasingly difficult for radiotherapy centers, particularly in rural areas, to recruit qualified therapeutic medical physi...

Global Needs Assessment of Medical Physicists Working in Low-and-Middle-Income Countries

Authors: Stephen M. Avery, Izabella L. Barreto, Oi-Wai Chau, Cesar Della Biancia, Beata Gontova Bernat, Amanda M. Jackson, Rao Khan, Eugene P. Lief, Osama R. Mawlawi, Wilfred F. Ngwa, Christopher F. Njeh, Peter Allan Sandwall, William Swanson, Joseph Weygand, Afua A. Yorke

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, VA Medical Center, Johns Hopkins University, Mayo Clinic, Champion Cancer Center, Howard University, UT MD Anderson Cancer Center, Department of Radiation Oncology and Applied Science, Dartmouth Health, University of Washington, University of Florida College of Medicine, Washington University in St Louis, Emory University, University of Pennsylvania, OhioHealth, Indiana University School of Medicine, Department of Radiation Oncology

Abstract Preview: Purpose: To assess needs of medical physicists working in low-and-middle-income countries (LMICs)
Methods: A survey was developed by AAPM’s Global Needs Assessment Committee (GNAC) in partnership w...

Graph Neural Network with Long Short-Term Memory for CT-Based Macrotrabecular-Massive Hepatocellular Carcinoma Diagnosis

Authors: Enhui Chang, Yunfei Dong, Yifei Hao, Chengliang Jin, Shengsheng Lai, Yi Long, Mengni Wu, Yulu Wu, Ruimeng Yang, Zhenyu Yang, Yue Yuan, Lei Zhang, Wanli Zhang, Yaogong Zhang

Affiliation: Duke Kunshan University, Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Macrotrabecular-Massive Hepatocellular Carcinoma (MTM-HCC) is one type of liver cancer showed minimum image signature for accurate non-invasive diagnosis. This study aims to develop and evalu...

High Resolution Head Motion Correction Based on Pilot Tone Signals – a Calibration-Free Method

Authors: Cheng-Chieh Cheng, Jeffrey P Guenette, Yajun Li, Bruno Madore, Lei Qin

Affiliation: Brigham and Women's Hospital, National Sun Yat-sen University, Dana-Farber Cancer Institute

Abstract Preview: Purpose: Pilot tone (PT), a compact RF sensor, has been integrated into clinical practice for motion detection. Prior studies proposed mapping PT signals to head positions using a calibration step tha...

High-Fidelity Synthetic CT Generation from CBCT for Dibh Breast Cancer Patients Using Shortest Path Regularization

Authors: Manju Liu, Weiwei Sang, Yanyan Shi, Zhenyu Yang, Fang-Fang Yin, Chulong Zhang, Lihua Zhang, Rihui Zhang

Affiliation: Jiahui International Hospital, Jiahui International Hospital, Radiation Oncology, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: This study aims to transform cone-beam computed tomography (CBCT) images acquired from deep inspiration breath-hold (DIBH) breast cancer patients into high-fidelity synthetic CT (sCT) images....

High-Fidelity Treatment Optimization for Online Adaptive Stereotactic Partial Breast Irradiation: Integrating Dose and Treatment Time Considerations

Authors: Drexell Hunter Boggs, Carlos E. Cardenas, Jingwei Duan, Joseph Harms, Joel A. Pogue, Richard A. Popple, Courtney Bosse Stanley, Dennis N. Stanley, Sean Xavier Sullivan, Natalie N. Viscariello

Affiliation: Washington University in St. Louis, The University of Alabama at Birmingham, University of Alabama at Birmingham

Abstract Preview: Purpose: CBCT-guided online adaptive radiation therapy (OART) with Ethos for stereotactic accelerated partial breast irradiation (APBI) can mitigate inter-fraction variation, leading to dosimetric adv...

High-Quality Patchnet (HQ-PatchNet) for Synthetic CT Generation in Head & Neck Imaging

Authors: So Hyun Ahn, Chris Beltran, Byongsu Choi, Jeong Heon Kim, Jin Sung Kim, Bo Lu, Justin Chunjoo Park, Bongyong Song, Jun Tan

Affiliation: Mayo Clinic, Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Ewha Medical Research Institute, Ewha Womans University College of Medicine, UC San Diego, Yonsei University College of Medicine

Abstract Preview: Purpose:
Cone-beam computed tomography (CBCT) is widely used in IGRT for patient positioning but suffers from low resolution and poor soft tissue contrast. Synthetic CT (sCT) generated from CBCT ad...

Hybrid Prior-Enhanced Deep Image Prior (HPEDIP) Image Reconstruction for Ultra-Short Scans

Authors: Renee Farrell, Jinkoo Kim, Xin Qian, Ziyu Shu, Zhaozheng Yin, Tiezhi Zhang

Affiliation: Stony Brook Medicine, Washington University in St. Louis, Stony Brook University, Stony Brook University Hospital

Abstract Preview: Purpose: Ultra-short CT scan allows fast imaging speed, dose reduction, and compact system design. We developed a deep image prior (DIP) based reconstruction method named Hybrid Prior-Enhanced Deep Im...

Iguard: A Fully Unsupervised Image-Guidance Anomaly Recognition and Detection Framework in CBCT-Guided Radiotherapy.

Authors: James M. Lamb, Dishane Chand Luximon, Jack Neylon, Rachel Petragallo, Moritz Ritter, Timothy Ritter

Affiliation: Department of Radiation Oncology, University of California, Los Angeles, ETH Zurich, VCU Health System, Department of Radiation Oncology, University of Colorado

Abstract Preview: Purpose: Anomalies in cone beam computed tomography (CBCT) radiotherapy image guidance can signal treatment deviations. Repetitive review of setup image registrations by humans is inefficient, prone t...

Image Quality Enhancement for Transrectal Ultrasound Imaging of Prostate Brachytherapy Using Deep Learning: A Needle Eraser

Authors: Hilary P Bagshaw, Mark K Buyyounouski, Serdar Charyyev, Xianjin Dai, PhD, Yu Gao, Thomas R. Niedermayr, Lei Xing

Affiliation: Department of Radiation Oncology, Stanford University

Abstract Preview: Purpose: Real-time transrectal ultrasound imaging is the gold standard for needle placement and treatment planning of real-time based-ultrasound-based high dose-rate (HDR) prostate brachytherapy. Cumu...

Impact of Transfer Learning on Estimation of Intravoxel Incoherent Motion Parameters in the Liver

Authors: Marissa Brown, Geoffrey D. Clarke, Luke Norton

Affiliation: University of Texas Health Science Center at San Antonio

Abstract Preview: Purpose: To evaluate how different learning strategies affect convolutional neural network (CNN) estimates of the liver's intravoxel incoherent motion (IVIM) parameters.
Methods: A 3-stage U-Net wa...

Implementing a Knowledge-Based Planning Model for Gastrointestinal (GI) Site-Specific Plans for Photon Radiation Therapy

Authors: Andreea Dimofte, Maksym Sharma, Weibing Yang, Timothy C. Zhu

Affiliation: Department of Radiation Oncology, University of Pennsylvania, University of Pennsylvania

Abstract Preview: Purpose:
To assess the effectiveness and dosimetric impact of utilizing a knowledge-based planning model for GI site-specific plans.
Methods:
Six knowledge-based planning models were develope...

Improving Adversarial Approaches to Synthetic CT Image Generation with Skin Surface Masks

Authors: Mahya Ahmadzadeh, Nagarajan Kandasamy, Keyur Shah, Gregory C. Sharp, Santhosh Vadivel, John MacLaren Walsh

Affiliation: Electrical and Computer Engineering Department, Massachusetts General Hospital, Emory University, Drexel University

Abstract Preview: Purpose: In image-guided radiotherapy (IGRT), cone beam CTs (CBCTs) suffer from distortions that degrade registration with planning CTs. While CycleGANs can generate synthetic CTs (sCTs) from CBCTs, e...

Improving Mammography Diagnosis Accuracy through Global Context and Local Lesion Integration

Authors: Minbin Chen, Xiaoyi Dai, Xiaoyu Duan, Chunhao Wang, Fan Xia, Zhenyu Yang, Fang-Fang Yin, Chulong Zhang, Rihui Zhang

Affiliation: Duke University, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University, The First People's Hospital of Kunshan

Abstract Preview: Purpose: Deep learning (DL)-based mammography diagnosis presents unique challenges, as accurate interpretation requires both global breast condition analysis and local lesion structural information. E...

Incorporating Cyclic Group Equivariance into Deep Learning for Reliable Reconstruction of Rotationally Symmetric Tomography Systems

Authors: Fang-Fang Yin, Lei Zhang, Yaogong Zhang

Affiliation: Medical Physics Graduate Program, Duke Kunshan University

Abstract Preview: Purpose: Rotational symmetry is an inherent property of many tomography systems (e.g., CT, PET, SPECT), arising from the circular arrangement or rotation of detectors. This study revisits the image re...

Incorporating Physicians’ Contouring Style into Auto-Segmentation of Clinical Target Volume for Post-Operative Prostate Cancer Radiotherapy Using a Language Encoder

Authors: Steve B. Jiang, Chien-Yi Liao, Dan Nguyen, Daniel Yang, Hengrui Zhao

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Post-operative radiotherapy for prostate cancer requires precise contouring of the clinical target volume (CTV) to account for microscopic disease that is invisible in the image. However, ...

Integrating Foundation Model with Self-Supervised Learning for Brain Lesion Segmentation with Multimodal and Diverse MRI Datasets

Authors: Zong Fan, Fan Lam, Hua Li, Rita Huan-Ting Peng, Yuan Yang

Affiliation: University of Illinois at Urbana Champaign, University of Illinois at Urbana-Champaign, Washington University School of Medicine, University of Illinois Urbana-Champaign

Abstract Preview: Purpose: Accurate lesion segmentation in MRI is critical for early diagnosis, treatment planning, and monitoring disease progression in various neurological disorders. Cross-site MRI data can alleviat...

Integrating Multiple Modalities with Pretrained Swin Foundation Model for Head and Neck Tumor Segmentation

Authors: Jue Jiang, Aneesh Rangnekar, Shiqin Tan, Harini Veeraraghavan

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Weill Cornell Graduate School of Medical Sciences

Abstract Preview: Purpose: Clinicians often use information from FDG-PET and CT to interpret and delineate gross tumor (GTVp) and nodal (GTVn) volumes for radiotherapy planning in head and neck (HN) cancer patients. He...

Integrating Neuroanatomic Knowledge in Clinical Target Volumes for Glioma Patients Using Deep Learning

Authors: Ali Ajdari, Thomas R. Bortfeld, Christopher Bridge, Gregory Buti, Marcela Giovenco, Fredrik Lofman, Gregory C. Sharp, Helen A Shih, Tugba Yilmaz

Affiliation: Massachusetts General Hospital, RaySearch Laboratories, Department Of Radiation Oncology, Massachusetts General Hospital (MGH), Massachusetts General Hospital & Harvard Medical School, Massachusetts General Hospital and Harvard Medical School

Abstract Preview: Purpose: Defining radiation target volumes with accurate integration of the neuroanatomy is one of the major difficulties in designing glioma treatments. We developed a deep learning network for norma...

Investigate Deep-Learned MRI Reconstruction with Data Consistency Mechanism and Task-Informed Loss

Authors: Mark Anastasio, Hua Li, Zhuchen Shao

Affiliation: Washington University School of Medicine, University of Illinois Urbana-Champaign

Abstract Preview: Purpose: Ill-conditioned reconstruction problems in medical imaging, such as those arising from undersampled k-space data in MRI, can result in degraded image quality and clinical task-orientated perf...

Is Simplicity Even Better: Deep Learning Algorithms for Breath Motion Phase Prediction in Motion Management

Authors: Amanda J. Deisher, Andrew YK Foong, Witold Matysiak, Jing Qian, Xueyan Tang, Erik J. Tryggestad, Mi Zhou

Affiliation: Mayo Clinic

Abstract Preview: Purpose: Phase gating is commonly employed to mitigate the impact of tumor motion in radiotherapy. Due to the machine-specific time delay between triggering and radiation delivery, the triggering sign...

Knee Image Generation Based on Fine-Tuning Stable Diffusion Model

Authors: Xiangli Cui, Zilei Fu, Man Hu, Wanli Huo, Xiaoqing Wu, Jianguang Zhang, Yingying Zhang

Affiliation: Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, the Zhejiang-New Zealand Joint Vision-Based Intelligent Metrology Laboratory, College of Information Engineering, China Jiliang University, Departments of Radiation Oncology, Zibo Wanjie Cancer Hospital, Department of Oncology, Xiangya Hospital, Central South University, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences

Abstract Preview: Purpose:
Using Stable Diffusion to generate images of the knee in different disease states can enrich the medical imaging database and inject new vitality into the field of medical imaging analysis...

Knowledge-Based Deep Residual U-Net for Synthetic CT Generation Using a Single MR Volume for Frameless Radiosurgery

Authors: Justus Adamson, John Ginn, Yongbok Kim, Ke Lu, Trey Mullikin, Xiwen Shu, Chunhao Wang, Zhenyu Yang, Jingtong Zhao

Affiliation: Duke University, Duke Kunshan University

Abstract Preview: Purpose:
To develop a knowledge-based deep model for synthetic CT (sCT) generation from a single MR volume in frameless radiosurgery (SRS), eliminating the need for CT simulation prior to the SRS d...

Knowledge-Based Planning in Proton Therapy: Validation and Model Size Considerations with Limited Data

Authors: Gregory A Azzam, Michael Butkus, Nesrin Dogan, Robert Kaderka, Nhan Vu, Yihang Xu

Affiliation: University of Miami, Department of Radiation Oncology, University of Miami, University of Miami Sylvester Comprehensive Cancer Center, University of Miami, Sylvester Comprehensive Cancer Center

Abstract Preview: Purpose: Knowledge-based planning (KBP) has demonstrated potential for improving planning quality and efficiency. Adoption of KBP in particle therapy has been slow due to limited number of plans to tr...

Knowledge-Based Three-Dimensional Dose Prediction for High Dose Rate Prostate Brachytherapy

Authors: Mojtaba Behzadipour, Suman Gautam, Tianjun Ma, Ikchit Singh Sangha, Bongyong Song, William Song, Kumari Sunidhi

Affiliation: UC San Diego, Virginia Commonwealth University

Abstract Preview: Purpose: This study aims to develop a knowledge-based voxel-wise dose prediction system using a convolutional neural network (CNN) for high-dose-rate (HDR) prostate brachytherapy and to evaluate its p...

Large Scale Deployment of a Tailored and Hybrid Educational Strategy for Wartime Capacity Building: Aapm/HUG/Uamp Initiative to Transition Ukraine from Co-60 to IMRT through a Comprehensive Medical Physics Training Program

Authors: Victoria Susan Ainsworth, Stephen M. Avery, Serhii Brovchuk, Thomas Brown, Sean A. Dresser, Matthew D. Goss, Viktor M. Iakovenko, Kelly Kisling, Nataliya Kovalchuk, Robert F. Krauss, Wilfred F. Ngwa, Jatinder R. Palta, Julie A. Raffi, Peter Allan Sandwall, Natalka Suchowerska, William Swanson, Shada J. Wadi-Ramahi, Ruslan Zelinskyi

Affiliation: Allegheny Hospital, Johns Hopkins University, Virginia Commonwealth University, Stanford University, O.O. Shalimov National Institute of Surgery and Transplantology, Department of Radiation Oncology, UT Southwestern Medical Center, School of Physics, The University of Sydney, MaineHealth, University of California, San Diego, Duke University, Emory University, University of Pennsylvania, University of Pittsburgh Medical Center, Medical Physics Department, Medical center of Yuriy Spizhenko, OhioHealth, University of Massachusetts Lowell, St. Francis Hospital

Abstract Preview: Purpose: The AAPM International Council, in collaboration with Help Ukraine Group (HUG) and Ukrainian Association of Medical Physicists (UAMP), developed a novel hybrid year-long training course to as...

Liver Tumor Auto-Contouring Using Recurrent Neural Networks on MRI-Linac for Adaptive Radiation Therapy

Authors: Yan Dai, Jie Deng, Christopher Kabat, Weiguo Lu, Ying Zhang, Hengrui Zhao

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
MRI-guided adaptive radiotherapy (MRgART) using MR-LINAC systems offers significant advantages for liver cancer, enabling superior tumor delineation and online plan adaptation. However, ma...

Lymph Node Dose Is Associated with Immune Suppression and Poor Overall Survival in Locally Advanced Non-Small Cell Lung Cancer (NSCLC)

Authors: Ryan Gentzler, Xin He, James Larner, J.T. Morgan, Cam Nguyen, Wendy Stewart, Krishni Wijesooriya, Grant Williams

Affiliation: Department of Physics, University of Virginia, Department of Radiation Oncology, University of Virginia, Division of Hematology & Oncology, Department of Medicine, University of Virginia

Abstract Preview: Purpose: Some recent studies have shown Overall Survival (OS) of advanced-stage lung cancer patients treated with chemo-radiation therapy (CRT) is correlated with heart dose [1-5], while in other stud...

Medical Data Handler: A Research-Oriented Graphical User Interface for Dicom Processing, Image Analysis, and Data Management

Authors: Andrew R. Godley, Steve B. Jiang, Mu-Han Lin, Austen Matthew Maniscalco, Dan Nguyen, Yang Kyun Park

Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Preparing DICOM datasets for research and education is challenging due to the complexity of the format and the necessity for patient-specific handling. Existing workflows demand substantia...

Medical Physics Postdoctoral Research As an Entrée into the Profession: Results of a Survey Administered By the AAPM Medical Physics Graduate Education Subcommittee

Authors: Abdullah A. Alshreef, Elizabeth L. Bossart, Ashley Cetnar, Leonard H. Kim, Neil A. Kirby, Anna E. Rodrigues, Xin Wang, You Zhang

Affiliation: University of Miami, The University of Texas MD Anderson Cancer Center, Loma Linda University Medical Center, MD Anderson Cancer Center at Cooper, Cooper Medical School of Rowan University, The Ohio State University - James Cancer Hospital, UT Health San Antonio, Duke University, 5940 forest park road

Abstract Preview: Purpose: AAPM TG-298 reported several concerns regarding the training and education of alternative pathway candidates. Medical physics postdoctoral research, though not part of the certification pathw...

Medical Physics Training Program, Staff Retention, and Service Improvement Strategy in a Regional Radiotherapy Centre

Authors: Dilli Banjade, Ajeet Mishra, Shiaw Juen (Eugene) Tan

Affiliation: District Radiation Oncology Service WNW Health

Abstract Preview: Purpose: A shortage of qualified Radiation Oncology Medical Physicists (ROMPs) poses a critical challenge to providing advanced treatments in regional Australia. Training and retaining medical physici...

Mitigating Discrepancies in Radiology Reports: A Robust LLM Approach for Generating Consistent Impressions

Authors: Junwen Liu, Mengzhen Wang, Ning Wen, Jifeng Xiao, Fuhua Yan, Yanzhao Yang, Xuekun Zhang, Zheyu Zhang

Affiliation: Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Department of Radiology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai Jiaotong University, The SJTU-Ruijin-UIH Institute for Medical Imaging Technology, Shanghai Jiaotong University Schoo of Medicine

Abstract Preview: Purpose:This study aims to develop and evaluate a large language model (LLM) fine-tuned to generate consistent and accurate impressions from imaging findings. Additionally, the study investigates the ...

Multi-Organ Segmentation of Pelvic Cone-Beam Computed Tomography (CBCT) with Transformer Models to Enhance Adaptive Radiotherapy for Prostate Cancer

Authors: Ming Chao, Thomas Chum, Tenzin Kunkyab, Yang Lei, Tian Liu, Richard G Stock, Hasan Wazir, Junyi Xia, Jiahan Zhang

Affiliation: Icahn School of Medicine at Mount Sinai

Abstract Preview: Purpose:
This study aims to develop effective strategies for multi-organ segmentation of pelvic cone-beam computed tomography (CBCT) images based on transformer models to facilitate adaptive radiat...

Multi-Scale, Multi-Task Framework with Jacobian Descent for Multi-Plan Dose Prediction in Sequential Boost Radiotherapy

Authors: Steve B. Jiang, Mu-Han Lin, Yu-Chen Lin, Austen Matthew Maniscalco, Dan Nguyen, David Sher, Xinran Zhong

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, UT Southwestern Medical Center, UT Dallas

Abstract Preview: Purpose:
Sequential boost radiotherapy (RT) poses a challenge in allocating dose across multiple plans while protecting organs at risk (OARs). Clinicians must decide whether OAR sparing should occu...

Nnae: Automating Anomaly Detection and Quality Assurance in Medical Image Segmentation

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose:
Deep learning-based automatic medical image segmentation is increasingly employed in clinical practice, significantly reducing manual workload. However, verifying segmentation results rema...

Nomogram Based on Interpretable Multiregional Radiomics of Cone-Beam Breast CT and Clinicopathologic Features for Predicting FISH Status in HER2 2+ Breast Cancer to Differentiate HER2-Low from -Positive: A Multi-Center Study

Authors: Keyi Bian, Marco Caballo, Wenxiu Guo, Haijie Li, Jiao Li, Aidi Liu, Yue Ma, Ioannis Sechopoulos, Yafei Wang, Yaopan Wu, Zhaoxiang Ye, Yuwei Zhang, Yueqiang Zhu, Daan van den Oever

Affiliation: Radboud University Medical Center, Tianjin Medical University Cancer Institute & Hospital, Sun Yat-Sen University Cancer Center

Abstract Preview: Purpose: To develop and validate a nomogram integrating intra- and peritumoral radiomics of contrast-enhanced cone-beam breast CT (CE-CBBCT) and clinicopathologic features for predicting fluorescence ...

Novel AI-Powered Tool to Objectively Evaluate Brain Dose for Multi-Met Stereotactic Radiosurgery Optimization

Authors: Wenchao Cao, Yingxuan Chen, Haisong Liu, Richard A. Popple, Wenyin Shi, Rodney J. Sullivan, Wentao Wang, Lydia J. Wilson, Zhenghao Xiao

Affiliation: Thomas Jefferson University, The University of Alabama at Birmingham, University of Alabama at Birmingham

Abstract Preview: Purpose: Objectively evaluating brain sparing as a plan-quality indicator for patients receiving stereotactic radiosurgery (SRS) to multiple metastases (multi-met) is complicated by variability in tar...

Numerical Study the Pharmacokinetic Model of Radiopharmaceuticals in Nuclear Medicinea Multidisciplinary Integration Case for Computational Physics Teaching

Authors: Mingyang Han, Jia Jing, Chongming Li, Hui Lin, Zhenyu Xiong

Affiliation: School of Physics, Hefei University of Technology, Rutgers Cancer Institute of New Jersey

Abstract Preview: Purpose: To enrich the teaching case library of Computational Physics course, one of the basic courses in undergraduates majoring in physics. It is an excellent application case of Medical Physics for...

On Designing a Vascular Flow Phantom for Contrast-Enhanced Ultrasound Imaging

Authors: Kevin M Brom, Josep Chorro Bas, RosaAnna Chorro Bas, Andres Climent Rubio, Jaydev K. Dave, Tobias Kummer, Larissa Shiue, Donald J Tradup

Affiliation: Mayo Clinic, Prehospital Critical Care Training Group

Abstract Preview: Purpose: To design and evaluate the functionality of a vascular flow phantom for contrast-enhanced ultrasound imaging (CEUS).

Methods: A microcontroller-generated signal was amplified by a cust...

Online Active Learning Strategies for Global Medical Physics Education: A Scoping Review

Authors: Mary Gronberg, Kelly Kisling, Ana Maria Marques da Silva

Affiliation: University of California, San Diego, The University of Texas Southwestern Medical Center, Pontifical Catholic University of Rio Grande do Sul

Abstract Preview: Purpose: To evaluate the current status of online teaching in medical physics and identify effective active learning strategies for global medical physics education.
Methods: A scoping review was c...

Optimization of the U-Net Model for the Radiation Dose Prediction in Lung Cancer RT Plans and Its Uncertainty Quantification

Authors: Ibtisam Almajnooni, Victor Cobilean, Milos Manic, Harindra Sandun Mavikumbure, Elisabeth Weiss, Lulin Yuan

Affiliation: Virginia Commonwealth University

Abstract Preview: Purpose: This study aims to optimize the 3D U-Net architecture for dose prediction in lung cancer radiation therapy (RT) plans, particularly in scenarios with limited clinical data, as well as to quan...

PET Imaging and Novel Cardiac Radiomics to Predict Pre-Radiotherapy Cardiac Conditions for Lung Cancer Patients Undergoing Radiotherapy.

Authors: Wookjin Choi, Michael Dichmann, Adam Dicker, Nilanjan Haldar, Yingcui Jia, Nicole L Simone, Eugene Storozynsky, Yevgeniy Vinogradskiy, Maria Werner-Wasik

Affiliation: Thomas Jefferson University, 9Department of Radiation Oncology, Thomas Jefferson University

Abstract Preview: Purpose: Cardiotoxicity remains a significant limitation for lung cancer patients treated with radiotherapy. Pre-radiotherapy cardiac conditions increase the probability of patients developing cardiot...

Patient-Specific Coronary Artery Habitat Model for Enhanced Cardiac Sparing

Authors: Blessing Akinro, Soumyanil Banerjee, Ming Dong, Carri K. Glide-Hurst, Prashant Nagpal, Chase Ruff, Nicholas R. Summerfield, Timothy P. Szczykutowicz

Affiliation: Departments of Human Oncology and Medical Physics, University of Wisconsin-Madison, Departments of Radiology and Medical Physics, University Wisconsin-Madison, Department of Radiology, University of Wisconsin-Madison, Department of Computer Science, Wayne State University, Department of Human Oncology

Abstract Preview: Purpose: Radiation dose to coronary arteries (CAs) during thoracic radiotherapy (RT) is linked to cardiotoxicity. However, precise CA delineation for avoidance is limited by image quality and CA compl...

Patient-Specific Imaging Modality Agnostic Virtual Digital Twins Modeling Temporally Varying Digestive Motion

Authors: James M. Balter, Lando S. Bosma, Jorge Tapias Gomez, Nishant Nadkarni, Mert R Sanbuncu, William Paul Segars, Ergys D. Subashi, Neelam Tyagi, Harini Veeraraghavan

Affiliation: University of Michigan, The University of Texas MD Anderson Cancer Center, Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Carl E. Ravin Advanced Imaging Laboratories and Center for Virtual Imaging Trials, Duke University Medical Center, Cornell University, University Medical Center Utrecht, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: Develop patient-specific virtual digital twin (VDT) cohorts modeling physically realistic spatio-temporal gastrointestinal (GI) organs (stomach and duodenum) digestive motion.
Methods: Pat...

Patient-Specific Treatment Plan Optimization through Intentional Deep Overfit Learning As a Warm Start for Longitudinal Adaptive Radiotherapy

Authors: Wouter Crijns, Frederik Maes, Loes Vandenbroucke, Liesbeth Vandewinckele

Affiliation: Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven; Department of Radiation Oncology, UZ Leuven, Department ESAT/PSI, KU Leuven; Medical Imaging Research Center, UZ Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven

Abstract Preview: Purpose: To explore intentional deep overfit learning (IDOL) to exploit the initial treatment plan to predict an adaptive radiotherapy plan.
Methods: A conditional generative adversarial network is...

Performance Analysis of Various Deep Learning Networks for Classification of True and False Positive 18F-PSMA Findings

Authors: Vasiliki Chatzipavlidou, Ilias Gatos, George C. Kagadis, Theodoros Kalathas, Paraskevi Katsakiori, Anna Makridou, Dimitris N. Mihailidis, Nikos Papathanasiou, Ioanna Stamouli, Stavros Tsantis

Affiliation: Theageneio Hospital, University of Pennsylvania, University of Patras

Abstract Preview: Purpose: To compare the performance of multiple deep learning (DL) networks, including DenseNet201, InceptionV3, MobileNetV3, EfficientNetB2, NASNetMobile, VGG19, ResNet50, and Xception, in classifyin...

Posterior-Mean Diffusion Model for Realistic PET Image Reconstruction

Authors: Osama R. Mawlawi, Yiran Sun

Affiliation: RICE University, UT MD Anderson Cancer Center

Abstract Preview: Purpose: Conventional PET reconstruction methods often produce noisy images with artifacts due to data/model mismatches and inconsistencies. Recently, deep learning-based conditional denoising diffusi...

Predicting Brain V60% in Linac-Based Single-Isocenter-Multiple-Targets (SIMT) Stereotactic Radiosurgery Using Machine Learning

Authors: John Ginn, Zhuoyun Huang, Yongbok Kim, Ke Lu, Chunhao Wang, Yibo Xie, Zhenyu Yang, Jingtong Zhao

Affiliation: Duke University, Duke Kunshan University

Abstract Preview: Purpose: This study aims to develop and validate a machine learning model for predicting V60%, a critical dosimetric metric in LINAC-based Single-Isocenter-Multiple-Targets (SIMT) stereotactic radiosu...

Predicting CBCT-Based Adaptive Radiation Therapy Session Duration Using Machine Learning

Authors: Leslie Harrell, Sanjay Maraboyina, Romy Megahed, Maida Ranjbar, Xenia Ray, Pouya Sabouri

Affiliation: Department of Radiation Oncology, University of Arkansas for Medical Sciences (UAMS), University of California San Diego

Abstract Preview: Purpose: Real-time adaptive radiation therapy (ART) dynamically modifies patients’ treatment plan during delivery to account for anatomical and physiological variations. Addressing ART planning time v...

Prediction of Head and Neck Cancer Using Artificial Neural Network through Basic Health Data

Authors: Abdullah Hidayat, Wazir Muhammad

Affiliation: Florida Atlantic University

Abstract Preview: Purpose: This study aims to predict Head and Neck cancer using an artificial neural network (ANN) through readily available basic health data. The goal is to uncover hidden patterns and predictors in ...

Prediction of Metastasis-Free Survival in Patients with Prostate Adenocarcinoma Using Primary Tumor and Lymph Node Radiomics from Pre-Treatment PSMA PET/CT Scans.

Authors: Ozan Cem Guler, William Silva Mendes, Sangbo Oh, Cem Onal, Lei Ren, Apurva Singh, Phuoc Tran

Affiliation: University of Maryland School of Medicine, Baskent University Faculty of Medicine, Department of Radiation Oncology, Department of Radiation Oncology, University of Maryland School of Medicine

Abstract Preview: Purpose: To predict metastasis-free survival (MFS) for patients with prostate adenocarcinoma treated with androgen deprivation therapy and external radiotherapy using clinical factors and radiomics ex...

Prior-Adapted Progressive Motion-Resolved CBCT Reconstruction Using a Dynamic Reconstruction and Motion Estimation Method

Authors: Hua-Chieh Shao, You Zhang, Ruizhi Zuo

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose: Cone-beam CT (CBCT) provides on-board patient anatomy for image guidance and treatment adaptation in radiotherapy. However, to compensate for respiration-induced anatomical motion, motion-res...

Python-Native Cerr for Cloud-Based Medical Image Analyses

Authors: Aditya P. Apte, Joseph O. Deasy, Sharif Elguindi, Aditi Iyer, Jue Jiang, Eve Marie LoCastro, Jung Hun Oh, Amita Shukla-Dave, Harini Veeraraghavan

Affiliation: Department of Medical Physics, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center

Abstract Preview: Purpose: We present port of popular Computational Environment for Radiological Research software platform to Python programming language to cater to cloud-based analyses.
Methods: The components of...

Rapid Reconstruction of Extremely Accelerated Liver 4D MRI Via Chained Iterative Refinement

Authors: Mary Feng, Yi Lao, Hui Lin, Hengjie Liu, Xin Miao, Michael Ohliger

Affiliation: University of California, Los Angeles, Department of Radiation Oncology, University of California San Francisco, Department of Radiation Oncology, City of Hope National Medical Center, University of California San Francisco, Siemens Medical Solutions USA Inc.

Abstract Preview: Purpose: 4D MRI with high spatiotemporal resolution is vital to characterize the tumor/tumor motion for liver radiotherapy. However, high-quality 4D MRI requires an impractically long scanning time fo...

Real-Time 3D Dose Verification for MR-Guided Online Adaptive Radiotherapy (ART) Via Geometry-Encoded Deep Learning Framework

Authors: Steve B. Jiang, Dan Nguyen, Chenyang Shen, Fan-Chi F. Su, Jiacheng Xie, Shunyu Yan, Daniel Yang, Ying Zhang, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, The University of Texas at Dallas

Abstract Preview: Purpose: Fast dose verification is essential for the safety and efficiency of MR-guided adaptive radiotherapy (ART) as patients anxiously waiting on the treatment couch. Conventional tools often requi...

Real-Time Automatic Treatment Planning System (RT-AutoTPS) for Volumetric Modulated Arc Radiotherapy (VMAT)

Authors: Steve B. Jiang, Austen Matthew Maniscalco, Dan Nguyen, Chenyang Shen, Jiacheng Xie, Shunyu Yan, Ying Zhang, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab & Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, The University of Texas at Dallas

Abstract Preview: Purpose: Although treatment planning systems (TPSs) can handle dose calculation and plan optimization automatically, planning for radiotherapy still requires extensive efforts and expertise from a mul...

Refined Nnu-Net Training for Practice-Specific Autosegmentation of APBI Targets

Authors: Daniel A. Alexander, Jonathan Baron, Brook Kennedy Byrd, William Ross Green, Bolin Li, Rafe A. McBeth, Abigail Pepin, Steven Philbrook

Affiliation: Department of Radiation Oncology and Applied Sciences, Department of Radiation Oncology, University of Pennsylvania, Thayer School of Engineering, University of Pennsylvania

Abstract Preview: Purpose: As accelerated partial breast irradiation (APBI) gains traction, the prospect of a rapid sim-to-completion of treatment workflow is an attractive option for patients. While OAR autocontouring...

Research on Glioma MRI Image Generation Based on Large Language Model and Diffusion Model

Authors: Xiangli Cui, Chi Han, Man Hu, Wanli Huo, Xunan Wang, Jianguang Zhang, Yingying Zhang

Affiliation: Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Departments of Radiation Oncology, Zibo Wanjie Cancer Hospital, Department of Oncology, Xiangya Hospital, Central South University, China Jiliang University, the Zhejiang-New Zealand Joint Vision-Based Intelligent Metrology Laboratory, College of Information Engineering, China Jiliang University, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, China Jiliang University,

Abstract Preview: Purpose:
Medical image generation has broad application prospects in deep learning, but the model training effect is often limited due to the lack of real image data. This study aims to explore the...

Research on Multi-Organ Segmentation Based on Cross-Domain Transfer Learning

Authors: Jiali Gong, Yi Guo, Chi Han, Wanli Huo, Hongdong Liu, Zhao Peng, Yaping Qi, Zhaojuan Zhang

Affiliation: Department of Radiotherapy, cancer center, The First Affiliated Hospital of Fujian Medical University, Department of Oncology, Xiangya Hospital, Central South University, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, China Jiliang University, Division of lonizing Radiation Metrology, National Institute of Metrology, Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, the Zhejiang-New Zealand Joint Vision-Based Intelligent Metrology Laboratory, College of Information Engineering, China Jiliang University

Abstract Preview: Purpose: To address overfitting from limited training data in multi-organ segmentation, an efficient transfer learning framework is proposed. It reduces reliance on training samples, enabling a single...

Robustness of Deep Learning-Based Motion Compensated 4D-CBCT Reconstruction to out-of-Distribution Data

Authors: Geoffrey D. Hugo, Eric Laugeman, Thomas R. Mazur, Pamela Samson, Kim A. Selting, Zhehao Zhang

Affiliation: University of Illinois, Washington University in St. Louis School of Medicine, WashU Medicine

Abstract Preview: Purpose: To investigate the robustness of a deep learning (DL)-based 4D-CBCT motion-compensated (MoCo) reconstruction method to out-of-distribution data.
Methods: Our developed 4D-CBCT reconstructi...

Skin Lesion Subtype Classification Using Lesion and Border Radiomic Features

Authors: Rituparna Basak, Maede Boroji, Renee F Cattell, Vahid Danesh, Imin Kao, Kartik Mani, Xin Qian, Samuel Ryu, Tiezhi Zhang

Affiliation: Stony Brook Medicine, Stony Brook University, Washington University in St. Louis, Stony Brook University Hospital

Abstract Preview: Purpose: Fundamental qualitative characteristics physicians use to differentiate skin lesion subtypes include asymmetry, border irregularity, and color. Radiomic features have potential to quantify th...

Small but Mighty: A Lightweight and Computationally Efficient Model for Deformable Image Registration

Authors: Hengjie Liu, Dan Ruan, Ke Sheng, DI Xu

Affiliation: Physics and Biology in Medicine, University of California, Los Angeles, Department of Radiation Oncology, University of California, San Francisco, Department of Radiation Oncology, University of California at San Francisco, Department of Radiation Oncology, University of California, Los Angeles

Abstract Preview: Purpose:
State-of-the-art deep learning-based deformable image registration often uses large, complex models directly adapted from computer vision tasks but achieves only comparable performance to ...

Spherical Slicing and Convolutions for Accurate Glioma Tumor Segmentation Using Multi-Parametric MRI

Authors: Ke Lu, Chunhao Wang, Ruoxu Xia, Zhenyu Yang, Fang-Fang Yin, Chulong Zhang, Lei Zhang, Rihui Zhang, Jingtong Zhao, Haiming Zhu

Affiliation: Duke University, Duke Kunshan University, Medical Physics Graduate Program, Duke Kunshan University, The First People's Hospital of Kunshan

Abstract Preview: Purpose: The human brain’s spherical geometry offers unique opportunities for improving the segmentation of tiny and irregular anatomical structures. We hypothesize that representing the brain in sphe...

Streamlining Direct-to-Unit Clinical Set-Ups for Radiation Therapy

Authors: Lori Buchholtz, Alison Garda, Chris L. Hallemeier, Kathryn L. Kolsky, Han Liu, Joseph John Lucido, Marisa Schinter, Andrew J. Veres, Sara Walerak

Affiliation: Mayo Clinic

Abstract Preview: Purpose: The C_START initiative aims to streamline and simplify the Direct-to-Unit (DtU) clinical setup and treatment planning process for photon radiation therapy, particularly for emergent cases suc...

Structure-Based Diffusion Model for CT Synthesis from MR Images for Radiotherapy Treatment Planning

Authors: Samuel Kadoury, Redha Touati

Affiliation: Polytechnique Montréal

Abstract Preview: Purpose:
Generating synthetic CT images from MR acquisitions for radiotherapy planning allows to integrate soft tissue contrast alongside density information stemming from CT, thus improving tumor ...

Support for Radiotherapy in Ukraine: Help Ukraine Group Activities and the Importance of International Collaboration

Authors: Serhii Brovchuk, Viktor M. Iakovenko, Nataliya Kovalchuk, Yuliia Lozko, Zoia Shepil, Natalka Suchowerska, Ruslan Zelinskyi

Affiliation: Kyiv Regional Oncology Dispensary, Stanford University, O.O. Shalimov National Institute of Surgery and Transplantology, School of Physics, The University of Sydney, Medical Physics Department, Medical center of Yuriy Spizhenko, Department of Radiation Oncology, UT Southwestern Medical Center, Stanford Cancer Center

Abstract Preview: Purpose: The full-scale russian invasion of Ukraine has caused the largest humanitarian disaster in Europe since World War II. This study identifies gaps in RT services caused by the war and outlines ...

Synthetic CT Generation from a Cycle Diffusion Model Based Framework for Ultrasound-Based Prostate HDR Brachytherapy

Authors: Michael Baine, Charles Enke, Yang Lei, Yu Lei, Ruirui Liu, Su-Min Zhou

Affiliation: Icahn School of Medicine at Mount Sinai, University of Nebraska Medical Center, Department of Radiation Oncology, University of Nebraska Medical Center

Abstract Preview: Purpose: This study presents a framework for generating synthetic CT images using a Cycle Diffusion model, which can be utilized to enhance needle conspicuity in ultrasound-guided prostate HDR brachyt...

Task-Specific Deep-Neural-Network Architecture Optimization for CBCT Scatter Correction

Authors: Hoyeon Lee

Affiliation: University of Hong Kong

Abstract Preview: Purpose: Deep-learning approaches are widely investigated for Cone-Beam CT (CBCT) scatter correction to improve the quality of the linear-accelerator mounted CBCT. This study aims to optimize the deep...

Teach What You See: Incorporating Theranostics Curriculum into Medical Physics Resident Education

Authors: Isaac J. Bailey, Lindsay S. DeWeese, Anna M. Mench, Celeste Winters

Affiliation: Oregon Health & Science University, Department of Diagnostic Radiology, Oregon Health & Science University

Abstract Preview: Purpose: The emergence and recent FDA approval of several new radiopharmaceutical therapies have increased demand for physicists to provide specialized support. However, these topics are not yet inclu...

Transformer-Based Proton Dose Prediction with and without Diffusion Process

Authors: Jing Qian, Brandon Reber, David M. Routman, Satomi Shiraishi

Affiliation: Mayo Clinic

Abstract Preview: Purpose: The dose distribution in proton radiotherapy (PRT) is characterized by sharp gradients, posing a challenge for machine learning-based dose prediction. While denoising with diffusion processes...

Ultra-Sparse-View Cone-Beam CT Reconstruction Based Strictly-Structure-Preserved Deep Neural Network in Image-Guided Radiation Therapy

Authors: Guangjun Li, Ying Song, Huanan Tang, Tianxiong Wu, Qiuyi Ye, Wei Zhang

Affiliation: West China Second Hospital of Sichuan University, United Imaging Healthcare, West China Hospital of Sichuan University

Abstract Preview: Purpose:
To propose a general low-dose reconstruction model for ultra-sparse-view cone-beam CT (CBCT) and evaluate its clinical application in improving image quality and reducing radiation dose fo...

Uncertainty-Guided Cross-Domain Adaptation for Unsupervised Medical Image Segmentation

Authors: Yunxiang Li, Weiguo Lu, Xiaoxue Qian, Hua-Chieh Shao, You Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center

Abstract Preview: Purpose:
Curating high-quality, labeled data for medical image segmentation can be challenging and costly, considering the existence of various image domains with differing modalities/protocols. Cr...

Unidose: A Universal Framework for IMRT Dose Prediction

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Zi Yang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose: Dose prediction (DP) is essential in guiding radiotherapy planning. However, current DP models for intensity-modulated radiation therapy (IMRT) primarily rely on fixed-beam orientations and a...

Universal MR-to-Synthetic CT: A Streamlined Framework for MR-Only Radiotherapy Planning

Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine

Abstract Preview: Purpose:
Converting MR images to synthetic CT (MR2sCT) is highly desirable as it streamlines the radiotherapy treatment planning workflow. This approach leverages the superior soft tissue visibilit...

Using Machine Learning to Predict Esophagitis Risk in Lung Cancer Radiotherapy Based on Clinical and Dosimetric Factors

Authors: Ibtisam Almajnooni, Siyong Kim, Nathaniel Miller, Elisabeth Weiss, Lulin Yuan

Affiliation: Virginia Commonwealth University

Abstract Preview: Purpose: Radiation-induced esophagitis (RE) is a common concern in lung cancer IMRT. Recent studies have indicated that the risk of radiation side effects varies greatly with patients’ baseline clinic...

Using a Generative Adversarial Network (GAN) for Source Particle Generation in Monte Carlo Radiation Therapy Simulations

Authors: Jiankui Yuan, Dandan Zheng, Tingliang Zhuang

Affiliation: Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, University of Rochester, Varian Medical Systems, Advanced Oncology Solutions

Abstract Preview: Purpose: In Monte Carlo (MC) radiation therapy dose calculations, latent variance exists when directly applying phase-space files (PSF) with a finite number of source particles, while the latter is pr...

VMAT Machine Parameter Optimization Using Policy Gradient Reinforcement Learning

Authors: Avinash Mudireddy, Nathan Shaffer, Joel J. St-Aubin

Affiliation: University of Iowa

Abstract Preview: Purpose: This work demonstrates preliminary results in training a reinforcement learning (RL) network to perform VMAT machine parameter optimization.
Methods: We implemented a policy gradient RL al...