Authors: Lorenzo Arsini, Andrea Ciardiello, Fabio Massimo D'Amore, Stefano Giagu, Federico Giove, Carlo Mancini-Terracciano, Cecilia Voena
Affiliation: Istituto Superiore di Sanità, Sapienza University of Rome, Università Sapienza Roma, Magnetic Resonance for Brain Investigation Laboratory, Museo Storico della Fisica e Centro di Studi e Ricerche Enrico Fermi
Abstract Preview: Purpose: To leverage newly developed heteronuclear magnetic resonance imaging (MRI) techniques, particularly sodium (23Na) imaging, for identifying potential biomarkers of Alzheimer's disease—such as ...
Authors: John P. Aris, Wesley E. Bolch, Madison Bushloper, Lauren E Ellis, Adam Grey Haneberg, Elizabeth Martin, Bonnie N. C. President, Andrew Robert Sforza, Alexander Zorrilla
Affiliation: Johns Hopkins University, Biomedical Engineering, University of Florida
Abstract Preview: Purpose: To develop six additional high-fidelity 3D models of kidney renal cortical labyrinth from H&E-stained histology slides to support radiation dosimetry in radiopharmaceutical therapies (RPTs).<...
Authors: Ross I. Berbeco, Vera Birrer, Raphael Bruegger, Pablo Corral Arroyo, Roshanak Etemadpour, Dianne M. Ferguson, Rony Fueglistaller, Thomas C. Harris, Yue-Houng Hu, Matthew W. Jacobson, Mathias Lehmann, Nicholas Lowther, Daniel Morf, Marios Myronakis
Affiliation: Brigham and Women's Hospital, Harvard Medial School, Dana-Farber Cancer Institute, Department of Radiation Oncology, Dana Farber/Brigham and Women's Cancer Center, Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Brigham and Womens Hospital, Dana Farber Cancer Institute, Harvard Medical School, Brigham and Women's Hospital, Varian Imaging Laboratory, Dana-Farber Cancer Institute
Abstract Preview: Purpose: A challenge for dual energy CBCT is that noise and residual errors in material decomposition steps can become amplified when forming low energy, high contrast virtual mono-energetic images (V...
Authors: Penghao Gao, Zejun Jiang
Affiliation: Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Artificial Intelligence Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences
Abstract Preview: Purpose: Real-time tumor tracking can effectively compensate for the impact of respiratory motion on dose distribution. We propose a patient-specific external-internal correlation model driven by opti...
Authors: Stephen R. Bowen, Chunyan Duan, Daniel S. Hippe, Qiantuo Liu, Jing Sun, Jiajie Wang, Shouyi Wang, Faisal Yaseen, Xiaojing Zhu
Affiliation: Tongji University, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Shanghai University of Electric Power, Fred Hutchinson Cancer Center, University of Texas at Arlington
Abstract Preview: Purpose: Accurate prediction of patient response to radiotherapy plays a crucial role in monitoring disease progression and assessing treatment efficacy, enabling clinicians to develop personalized th...
Authors: Hao-Wen Cheng, Jonathan G. Li, Chihray Liu, Wen-Chih Tseng, Guanghua Yan
Affiliation: University of Florida
Abstract Preview: Purpose: This study develops and evaluates deep learning (DL) models for predicting 3D dose distributions in simultaneous integrated boost (SIB) prostate cancer treatment using the Elekta Unity MR-Lin...
Authors: Wesley S. Culberson, Albert Du, Ryan T. Flynn, Ryan Gardner, Alonso N. Gutierrez, Patrick M Hill, Daniel E. Hyer, Blake R. Smith, Nhan Vu, Karsten K. Wake
Affiliation: University of Wisconsin, Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin - Madison, Miami Cancer Institute, Baptist Health South Florida, Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Iowa, Iowa Health Care
Abstract Preview: Purpose: In proton therapy, the substantial size of the gantry introduces sag, causing the proton isocenter to drift as a function of gantry angle. While the scanning magnets correct the beam’s isocen...
Authors: Kimberly Chan, Anke Henning, Mahrshi Jani, Andrew Wright, Xinyu Zhang
Affiliation: Advanced Imaging Research Center (AIRC), UT Southwestern Medical Center
Abstract Preview: Purpose: To evaluate the performance of multiple deep learning architectures for MRSI reconstruction and determine their effectiveness in maintaining high-resolution metabolite mapping while reducing ...
Authors: Hao Peng, Yajun Yu
Affiliation: Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center
Abstract Preview: Purpose: Personalized ultra-fractionated stereotactic adaptive radiotherapy (PULSAR) is a new treatment paradigm pioneered by our institution. But the early decision-making process in PULSAR is challe...
Authors: Xinhui Duan, Roderick W. McColl, Mi-Ae Park, Liqiang Ren, Gary Xu, Kuan Zhang, Yue Zhang
Affiliation: UT Southwestern Medical Center, Department of Radiology, UT Southwestern Medical Center, Imaging Services, UT Southwestern Medical Center
Abstract Preview: Purpose:
Image-based deep-learning noise-reduction techniques have been developed for photon-counting CT (PCCT) to improve image quality with reduced radiation dose. The denoising strength is typic...
Authors: Pouya Azarbar, Nima Kasraie, Peyman Sheikhzadeh
Affiliation: UT Southwestern Medical Center, Shahid Beheshti University of Medical science, Imam Khomeini Hospital Complex,Tehran University of Medical Sciences
Abstract Preview: Purpose: Positron Emission Tomography (PET) is crucial for diagnosing and monitoring diseases due to its functional imaging capabilities. However, its high cost, significant radiation exposure, and li...
Authors: Justus Adamson, John Ginn, Yongbok Kim, Ke Lu, Trey Mullikin, Xiwen Shu, Chunhao Wang, Zhenyu Yang, Jingtong Zhao
Affiliation: Duke University, Duke Kunshan University
Abstract Preview: Purpose:
To develop a knowledge-based deep model for synthetic CT (sCT) generation from a single MR volume in frameless radiosurgery (SRS), eliminating the need for CT simulation prior to the SRS d...
Authors: Anthony J. Doemer, Yimei Huang, Benjamin Movsas, Ellen Park, Mira Shah, Salim Siddiqui, Karen C. Snyder, Kundan S Thind, Bo Zhao
Affiliation: Henry Ford Health
Abstract Preview: Purpose: The 6 degrees-of-freedom (6-DoF) robotic couch is considered essential for linac-based stereotactic radiosurgery (SRS), particularly for irregularly shaped targets adjacent to critical organs...
Authors: Stephen R. Bowen, Chunyan Duan, Daniel S. Hippe, Qiantuo Liu, Jiajie Wang, Shouyi Wang, Faisal Yaseen, Han Zhou
Affiliation: Tongji University, University of Washington, Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Fred Hutchinson Cancer Center, University of Texas at Arlington
Abstract Preview: Purpose: Predicting the effects of the spatial-temporal tumor response to chemoradiation can assist in adjusting radiation dose and support clinical decision-making in radiotherapy. A multi-instance l...
Authors: Mingli Chen, Xuejun Gu, Hao Jiang, Mahdieh Kazemimoghadam, Weiguo Lu, Qingying Wang, Kangning Zhang
Affiliation: Medical Artificial Intelligence and Automation (MAIA) Lab, Department of Radiation Oncology, UT Southwestern Medical Center, UT Southwestern Medical Center, Department of Radiation Oncology, Stanford University School of Medicine
Abstract Preview: Purpose:
Deep learning-based automatic medical image segmentation is increasingly employed in clinical practice, significantly reducing manual workload. However, verifying segmentation results rema...
Authors: Ibtisam Almajnooni, Victor Cobilean, Milos Manic, Harindra Sandun Mavikumbure, Elisabeth Weiss, Lulin Yuan
Affiliation: Virginia Commonwealth University
Abstract Preview: Purpose: This study aims to optimize the 3D U-Net architecture for dose prediction in lung cancer radiation therapy (RT) plans, particularly in scenarios with limited clinical data, as well as to quan...
Authors: Yao Chen, Lesley A Jarvis, Allison Matous, Rongxiao Zhang
Affiliation: Dartmouth College, University of Missouri, Dartmouth Cancer Center, Dartmouth Health
Abstract Preview: Purpose: Precise patient positioning is critical in accelerated partial breast irradiation (aPBI) to ensure accurate dose delivery to the tumor bed while minimizing exposure to surrounding healthy tis...
Authors: John Ginn, Zhuoyun Huang, Yongbok Kim, Ke Lu, Chunhao Wang, Yibo Xie, Zhenyu Yang, Jingtong Zhao
Affiliation: Duke University, Duke Kunshan University
Abstract Preview: Purpose: This study aims to develop and validate a machine learning model for predicting V60%, a critical dosimetric metric in LINAC-based Single-Isocenter-Multiple-Targets (SIMT) stereotactic radiosu...